This HTML5 document contains 40 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
n4http://linked.opendata.cz/ontology/domain/vavai/riv/typAkce/
dctermshttp://purl.org/dc/terms/
n16http://localhost/temp/predkladatel/
n8http://purl.org/net/nknouf/ns/bibtex#
n20http://linked.opendata.cz/resource/domain/vavai/riv/tvurce/
n12http://linked.opendata.cz/ontology/domain/vavai/
n14http://linked.opendata.cz/resource/domain/vavai/zamer/
n10https://schema.org/
shttp://schema.org/
skoshttp://www.w3.org/2004/02/skos/core#
n3http://linked.opendata.cz/ontology/domain/vavai/riv/
n21http://linked.opendata.cz/resource/domain/vavai/vysledek/RIV%2F68407700%3A21230%2F09%3A00158093%21RIV10-MSM-21230___/
n2http://linked.opendata.cz/resource/domain/vavai/vysledek/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n11http://linked.opendata.cz/ontology/domain/vavai/riv/klicoveSlovo/
n19http://linked.opendata.cz/ontology/domain/vavai/riv/duvernostUdaju/
xsdhhttp://www.w3.org/2001/XMLSchema#
n18http://linked.opendata.cz/ontology/domain/vavai/riv/aktivita/
n13http://linked.opendata.cz/ontology/domain/vavai/riv/jazykVysledku/
n15http://linked.opendata.cz/ontology/domain/vavai/riv/druhVysledku/
n7http://linked.opendata.cz/ontology/domain/vavai/riv/obor/
n9http://reference.data.gov.uk/id/gregorian-year/

Statements

Subject Item
n2:RIV%2F68407700%3A21230%2F09%3A00158093%21RIV10-MSM-21230___
rdf:type
skos:Concept n12:Vysledek
dcterms:description
This paper reports preliminary results of steady-state movement related potential (ssMRP) classification using hidden Markov models (HMM). We develop a HMM-based classifier for a three-class BCI problem, i.e. rest, left/right finger tapping. Note that in contrast to [1], we here experimentally select the best pair of channels which attain the highest classification score instead of the 45 electrodes all over the sensorimotor cortex. The averaged correct classification rates (CCR) for different sliding time windows are reported. Reliable single trial classification rates of approximately 60%-80% accuracy are achievable. This paper reports preliminary results of steady-state movement related potential (ssMRP) classification using hidden Markov models (HMM). We develop a HMM-based classifier for a three-class BCI problem, i.e. rest, left/right finger tapping. Note that in contrast to [1], we here experimentally select the best pair of channels which attain the highest classification score instead of the 45 electrodes all over the sensorimotor cortex. The averaged correct classification rates (CCR) for different sliding time windows are reported. Reliable single trial classification rates of approximately 60%-80% accuracy are achievable.
dcterms:title
ssMRP state detection for brain computer interfacing using hidden Markov models ssMRP state detection for brain computer interfacing using hidden Markov models
skos:prefLabel
ssMRP state detection for brain computer interfacing using hidden Markov models ssMRP state detection for brain computer interfacing using hidden Markov models
skos:notation
RIV/68407700:21230/09:00158093!RIV10-MSM-21230___
n3:aktivita
n18:Z
n3:aktivity
Z(MSM6840770012)
n3:dodaniDat
n9:2010
n3:domaciTvurceVysledku
n20:3013472
n3:druhVysledku
n15:D
n3:duvernostUdaju
n19:S
n3:entitaPredkladatele
n21:predkladatel
n3:idSjednocenehoVysledku
343274
n3:idVysledku
RIV/68407700:21230/09:00158093
n3:jazykVysledku
n13:eng
n3:klicovaSlova
ssMRP; HMM; EEG; Brain Computer Interface
n3:klicoveSlovo
n11:ssMRP n11:Brain%20Computer%20Interface n11:EEG n11:HMM
n3:kontrolniKodProRIV
[C99925DFC631]
n3:mistoKonaniAkce
Cardiff
n3:mistoVydani
New York
n3:nazevZdroje
Proceedings of the Statistical Signal Processing, 2009. SSP '09. IEEE/SP 15th Workshop on
n3:obor
n7:JC
n3:pocetDomacichTvurcuVysledku
1
n3:pocetTvurcuVysledku
3
n3:rokUplatneniVysledku
n9:2009
n3:tvurceVysledku
Šťastný, Jakub
n3:typAkce
n4:WRD
n3:zahajeniAkce
2009-08-31+02:00
n3:zamer
n14:MSM6840770012
s:numberOfPages
4
n8:hasPublisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
n10:isbn
978-1-4244-2709-3
n16:organizacniJednotka
21230