This HTML5 document contains 46 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
n12http://linked.opendata.cz/ontology/domain/vavai/riv/typAkce/
dctermshttp://purl.org/dc/terms/
n13http://linked.opendata.cz/resource/domain/vavai/vysledek/RIV%2F68407700%3A21230%2F07%3A03134579%21RIV08-AV0-21230___/
n20http://purl.org/net/nknouf/ns/bibtex#
n15http://localhost/temp/predkladatel/
n17http://linked.opendata.cz/resource/domain/vavai/projekt/
n11http://linked.opendata.cz/resource/domain/vavai/riv/tvurce/
n19http://linked.opendata.cz/ontology/domain/vavai/
n14https://schema.org/
shttp://schema.org/
skoshttp://www.w3.org/2004/02/skos/core#
n3http://linked.opendata.cz/ontology/domain/vavai/riv/
n2http://linked.opendata.cz/resource/domain/vavai/vysledek/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n7http://linked.opendata.cz/ontology/domain/vavai/riv/klicoveSlovo/
n21http://linked.opendata.cz/ontology/domain/vavai/riv/duvernostUdaju/
xsdhhttp://www.w3.org/2001/XMLSchema#
n18http://linked.opendata.cz/ontology/domain/vavai/riv/aktivita/
n10http://linked.opendata.cz/ontology/domain/vavai/riv/jazykVysledku/
n16http://linked.opendata.cz/ontology/domain/vavai/riv/druhVysledku/
n8http://linked.opendata.cz/ontology/domain/vavai/riv/obor/
n6http://reference.data.gov.uk/id/gregorian-year/

Statements

Subject Item
n2:RIV%2F68407700%3A21230%2F07%3A03134579%21RIV08-AV0-21230___
rdf:type
skos:Concept n19:Vysledek
dcterms:description
We propose a coarse registration method of range images using both geometric and photometric features. The framework of existing methods using multiple features first defines a single similarity distance summing up each feature based evaluations, and then minimizes the distance between range images for registration. In contrast, we formulate registration as a graph-based optimization problem, where we independently evaluate geometric feature and photometric feature and consider only the order of point-to-point matching quality. We then find as large consistent matching as possible in the sense of the matchingquality order. This is solved as one global combinatorial optimization problem. Our method thus does not require any good initial estimation and, at the same time, guarantees that the global solution is achieved. We propose a coarse registration method of range images using both geometric and photometric features. The framework of existing methods using multiple features first defines a single similarity distance summing up each feature based evaluations, and then minimizes the distance between range images for registration. In contrast, we formulate registration as a graph-based optimization problem, where we independently evaluate geometric feature and photometric feature and consider only the order of point-to-point matching quality. We then find as large consistent matching as possible in the sense of the matchingquality order. This is solved as one global combinatorial optimization problem. Our method thus does not require any good initial estimation and, at the same time, guarantees that the global solution is achieved. We propose a coarse registration method of range images using both geometric and photometric features. The framework of existing methods using multiple features first defines a single similarity distance summing up each feature based evaluations, and then minimizes the distance between range images for registration. In contrast, we formulate registration as a graph-based optimization problem, where we independently evaluate geometric feature and photometric feature and consider only the order of point-to-point matching quality. We then find as large consistent matching as possible in the sense of the matchingquality order. This is solved as one global combinatorial optimization problem. Our method thus does not require any good initial estimation and, at the same time, guarantees that the global solution is achieved.
dcterms:title
Graph-based Range Image Registration Combining Geometric and Photometric Features Graph-based Range Image Registration Combining Geometric and Photometric Features Graph-based Range Image Registration Combining Geometric and Photometric Features
skos:prefLabel
Graph-based Range Image Registration Combining Geometric and Photometric Features Graph-based Range Image Registration Combining Geometric and Photometric Features Graph-based Range Image Registration Combining Geometric and Photometric Features
skos:notation
RIV/68407700:21230/07:03134579!RIV08-AV0-21230___
n3:strany
542;552
n3:aktivita
n18:P
n3:aktivity
P(1ET101210406)
n3:dodaniDat
n6:2008
n3:domaciTvurceVysledku
n11:8930112
n3:druhVysledku
n16:D
n3:duvernostUdaju
n21:S
n3:entitaPredkladatele
n13:predkladatel
n3:idSjednocenehoVysledku
423618
n3:idVysledku
RIV/68407700:21230/07:03134579
n3:jazykVysledku
n10:eng
n3:klicovaSlova
graph kernel; matching; range image; registration
n3:klicoveSlovo
n7:matching n7:registration n7:graph%20kernel n7:range%20image
n3:kontrolniKodProRIV
[C9D3972EC7AF]
n3:mistoKonaniAkce
Aalborg
n3:mistoVydani
Heidelberg
n3:nazevZdroje
SCIA 2007: Proceedings of 15th Scandinavian Conference on Image Analysis
n3:obor
n8:JD
n3:pocetDomacichTvurcuVysledku
1
n3:pocetTvurcuVysledku
3
n3:projekt
n17:1ET101210406
n3:rokUplatneniVysledku
n6:2007
n3:tvurceVysledku
Sugimoto, A. Šára, Radim Shimizu, I.
n3:typAkce
n12:WRD
n3:zahajeniAkce
2007-06-10+02:00
s:numberOfPages
11
n20:hasPublisher
Springer-Verlag
n14:isbn
978-3-540-73039-2
n15:organizacniJednotka
21230