This HTML5 document contains 47 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
n13http://localhost/temp/predkladatel/
n7http://linked.opendata.cz/resource/domain/vavai/riv/tvurce/
n15http://linked.opendata.cz/ontology/domain/vavai/
n11http://linked.opendata.cz/resource/domain/vavai/zamer/
n4https://schema.org/
n18http://linked.opendata.cz/ontology/domain/vavai/riv/kodPristupu/
skoshttp://www.w3.org/2004/02/skos/core#
n3http://linked.opendata.cz/ontology/domain/vavai/riv/
n2http://linked.opendata.cz/resource/domain/vavai/vysledek/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n19http://linked.opendata.cz/resource/domain/vavai/vysledek/RIV%2F68407700%3A21230%2F04%3A03099574%21RIV%2F2005%2FMSM%2F212305%2FN/
n5http://linked.opendata.cz/ontology/domain/vavai/riv/klicoveSlovo/
n8http://linked.opendata.cz/ontology/domain/vavai/riv/duvernostUdaju/
xsdhhttp://www.w3.org/2001/XMLSchema#
n16http://linked.opendata.cz/ontology/domain/vavai/riv/jazykVysledku/
n10http://linked.opendata.cz/ontology/domain/vavai/riv/aktivita/
n17http://linked.opendata.cz/ontology/domain/vavai/riv/druhVysledku/
n12http://linked.opendata.cz/ontology/domain/vavai/riv/obor/
n14http://reference.data.gov.uk/id/gregorian-year/

Statements

Subject Item
n2:RIV%2F68407700%3A21230%2F04%3A03099574%21RIV%2F2005%2FMSM%2F212305%2FN
rdf:type
skos:Concept n15:Vysledek
dcterms:description
We describe a clustering algorithm based on continuous Hidden Markov Models (HMM) to automatically classify both electrocardiogram (ECG) and intracranial pressure (ICP) beats based on their morphology. The algorithm detects, classifies and labels each beat based on morphology. In order to avoid the numerical problems with classical Expectation-Maximization (EM) algorithm we apply a novel method of simulated annealing (SIM) for HMM optimization. We show that better results are achieved using simulated annealing approach. Není k dispozici We describe a clustering algorithm based on continuous Hidden Markov Models (HMM) to automatically classify both electrocardiogram (ECG) and intracranial pressure (ICP) beats based on their morphology. The algorithm detects, classifies and labels each beat based on morphology. In order to avoid the numerical problems with classical Expectation-Maximization (EM) algorithm we apply a novel method of simulated annealing (SIM) for HMM optimization. We show that better results are achieved using simulated annealing approach.
dcterms:title
Morphology Analysis of Physiological Signals Using Hidden Markov Models Morphology Analysis of Physiological Signals Using Hidden Markov Models Není k dispozici
skos:prefLabel
Není k dispozici Morphology Analysis of Physiological Signals Using Hidden Markov Models Morphology Analysis of Physiological Signals Using Hidden Markov Models
skos:notation
RIV/68407700:21230/04:03099574!RIV/2005/MSM/212305/N
n3:aktivita
n10:Z
n3:aktivity
Z(MSM 210000012)
n3:dodaniDat
n14:2005
n3:domaciTvurceVysledku
n7:2793172 n7:9431446
n3:druhVysledku
n17:A
n3:duvernostUdaju
n8:S
n3:entitaPredkladatele
n19:predkladatel
n3:idSjednocenehoVysledku
574609
n3:idVysledku
RIV/68407700:21230/04:03099574
n3:jazykVysledku
n16:eng
n3:klicovaSlova
Dynamic Time Warping; Hidden Markov Models; Holter Electrocardiogram; Intracranial Pressure; Simulated Annealing
n3:klicoveSlovo
n5:Holter%20Electrocardiogram n5:Simulated%20Annealing n5:Intracranial%20Pressure n5:Hidden%20Markov%20Models n5:Dynamic%20Time%20Warping
n3:kodPristupu
n18:L
n3:kontrolniKodProRIV
[0CA1C5FB2F37]
n3:mistoVydani
London
n3:nosic
neuvedeno
n3:obor
n12:JC
n3:pocetDomacichTvurcuVysledku
2
n3:pocetTvurcuVysledku
7
n3:rokUplatneniVysledku
n14:2004
n3:tvurceVysledku
Micó, P. Novák, Daniel Al-ani, T. Cuesta-Frau, D. Lhotská, Lenka Aboy, M. Hamam, Y.
n3:zamer
n11:MSM%20210000012
n4:isbn
0-7695-2128-2
n13:organizacniJednotka
21230