This HTML5 document contains 37 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
n18http://localhost/temp/predkladatel/
n7http://linked.opendata.cz/resource/domain/vavai/projekt/
n4http://linked.opendata.cz/resource/domain/vavai/riv/tvurce/
n17http://linked.opendata.cz/ontology/domain/vavai/
n8https://schema.org/
n5http://linked.opendata.cz/ontology/domain/vavai/riv/kodPristupu/
skoshttp://www.w3.org/2004/02/skos/core#
n3http://linked.opendata.cz/ontology/domain/vavai/riv/
n14http://linked.opendata.cz/resource/domain/vavai/vysledek/RIV%2F68407700%3A21230%2F03%3A03087775%21RIV%2F2004%2FMSM%2F212304%2FN/
n2http://linked.opendata.cz/resource/domain/vavai/vysledek/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n11http://linked.opendata.cz/ontology/domain/vavai/riv/klicoveSlovo/
n10http://linked.opendata.cz/ontology/domain/vavai/riv/duvernostUdaju/
xsdhhttp://www.w3.org/2001/XMLSchema#
n19http://linked.opendata.cz/ontology/domain/vavai/riv/aktivita/
n12http://linked.opendata.cz/ontology/domain/vavai/riv/jazykVysledku/
n16http://linked.opendata.cz/ontology/domain/vavai/riv/obor/
n13http://linked.opendata.cz/ontology/domain/vavai/riv/druhVysledku/
n15http://reference.data.gov.uk/id/gregorian-year/

Statements

Subject Item
n2:RIV%2F68407700%3A21230%2F03%3A03087775%21RIV%2F2004%2FMSM%2F212304%2FN
rdf:type
skos:Concept n17:Vysledek
dcterms:description
For design of optimal and robust linear control systems algebraic Riccati equations or special quadratic polynomial equations called spectral factorization, depending on state or transfer function approach, need to be solved. In cases of equations with unknown parameters, it might be useful to solve them symbolically. The aim of the work was to implement and check up an algorithm for symbolic spectral factorization. For design of optimal and robust linear control systems algebraic Riccati equations or special quadratic polynomial equations called spectral factorization, depending on state or transfer function approach, need to be solved. In cases of equations with unknown parameters, it might be useful to solve them symbolically. The aim of the work was to implement and check up an algorithm for symbolic spectral factorization.
dcterms:title
Symbolic Solution of Spectral Factorization for Robust Control Symbolic Solution of Spectral Factorization for Robust Control
skos:prefLabel
Symbolic Solution of Spectral Factorization for Robust Control Symbolic Solution of Spectral Factorization for Robust Control
skos:notation
RIV/68407700:21230/03:03087775!RIV/2004/MSM/212304/N
n3:aktivita
n19:P
n3:aktivity
P(LN00B096)
n3:dodaniDat
n15:2004
n3:domaciTvurceVysledku
n4:6204821 n4:6287697
n3:druhVysledku
n13:A
n3:duvernostUdaju
n10:S
n3:entitaPredkladatele
n14:predkladatel
n3:idSjednocenehoVysledku
629912
n3:idVysledku
RIV/68407700:21230/03:03087775
n3:jazykVysledku
n12:eng
n3:klicovaSlova
polynomial - Hermitian Matrix;polynomial spectral factorization
n3:klicoveSlovo
n11:polynomial n11:polynomial%20spectral%20factorization
n3:kodPristupu
n5:L
n3:kontrolniKodProRIV
[FE00A91FED9E]
n3:mistoVydani
Bratislava
n3:objednatelVyzkumneZpravy
Not available
n3:obor
n16:BC
n3:pocetDomacichTvurcuVysledku
2
n3:pocetTvurcuVysledku
2
n3:projekt
n7:LN00B096
n3:rokUplatneniVysledku
n15:2003
n3:tvurceVysledku
Klimentová, Adéla Šebek, Michael
n3:verzeVyzkumneZpravy
Neuveden
n8:isbn
80-227-1902-1
n18:organizacniJednotka
21230