This HTML5 document contains 45 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
n12http://linked.opendata.cz/ontology/domain/vavai/riv/typAkce/
dctermshttp://purl.org/dc/terms/
n19http://localhost/temp/predkladatel/
n14http://purl.org/net/nknouf/ns/bibtex#
n6http://linked.opendata.cz/resource/domain/vavai/riv/tvurce/
n10http://linked.opendata.cz/ontology/domain/vavai/
n11https://schema.org/
n9http://linked.opendata.cz/resource/domain/vavai/zamer/
shttp://schema.org/
skoshttp://www.w3.org/2004/02/skos/core#
n3http://linked.opendata.cz/ontology/domain/vavai/riv/
n21http://linked.opendata.cz/resource/domain/vavai/vysledek/RIV%2F68407700%3A21110%2F06%3A00122645%21RIV11-MSM-21110___/
n2http://linked.opendata.cz/resource/domain/vavai/vysledek/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n8http://linked.opendata.cz/ontology/domain/vavai/riv/klicoveSlovo/
n13http://linked.opendata.cz/ontology/domain/vavai/riv/duvernostUdaju/
xsdhhttp://www.w3.org/2001/XMLSchema#
n18http://linked.opendata.cz/ontology/domain/vavai/riv/jazykVysledku/
n17http://linked.opendata.cz/ontology/domain/vavai/riv/aktivita/
n20http://linked.opendata.cz/ontology/domain/vavai/riv/obor/
n4http://linked.opendata.cz/ontology/domain/vavai/riv/druhVysledku/
n15http://reference.data.gov.uk/id/gregorian-year/

Statements

Subject Item
n2:RIV%2F68407700%3A21110%2F06%3A00122645%21RIV11-MSM-21110___
rdf:type
skos:Concept n10:Vysledek
dcterms:description
A procedure based on layered feed-forward neural networks for the microplane material model parameters identification is proposed in the present paper. Novelties are usage of the Latin Hypercube Sampling method for the generation of training sets, a sensitivity analysis and a genetic algorithm-based training of a neural network by an evolutionary algorithm. Advantages and disadvantages of this approach together with possible extensions are thoroughly discussed and analyzed. A procedure based on layered feed-forward neural networks for the microplane material model parameters identification is proposed in the present paper. Novelties are usage of the Latin Hypercube Sampling method for the generation of training sets, a sensitivity analysis and a genetic algorithm-based training of a neural network by an evolutionary algorithm. Advantages and disadvantages of this approach together with possible extensions are thoroughly discussed and analyzed.
dcterms:title
Microplane Model Parameters Estimation Using Neural Networks Microplane Model Parameters Estimation Using Neural Networks
skos:prefLabel
Microplane Model Parameters Estimation Using Neural Networks Microplane Model Parameters Estimation Using Neural Networks
skos:notation
RIV/68407700:21110/06:00122645!RIV11-MSM-21110___
n3:aktivita
n17:Z
n3:aktivity
Z(MSM6840770003)
n3:dodaniDat
n15:2011
n3:domaciTvurceVysledku
n6:5131391 n6:4695046 n6:9081429
n3:druhVysledku
n4:D
n3:duvernostUdaju
n13:S
n3:entitaPredkladatele
n21:predkladatel
n3:idSjednocenehoVysledku
485673
n3:idVysledku
RIV/68407700:21110/06:00122645
n3:jazykVysledku
n18:eng
n3:klicovaSlova
concrete; evolutionary algorithms; inverse analysis; neural networks; sensitivity analysis
n3:klicoveSlovo
n8:concrete n8:neural%20networks n8:inverse%20analysis n8:sensitivity%20analysis n8:evolutionary%20algorithms
n3:kontrolniKodProRIV
[FEC81778D79C]
n3:mistoKonaniAkce
Lisabon
n3:mistoVydani
Lisboa
n3:nazevZdroje
Proceedings of III-rd European Conference on Computational Mechanics
n3:obor
n20:JD
n3:pocetDomacichTvurcuVysledku
3
n3:pocetTvurcuVysledku
3
n3:rokUplatneniVysledku
n15:2006
n3:tvurceVysledku
Zeman, Jan Kučerová, Anna Lepš, Matěj
n3:typAkce
n12:WRD
n3:zahajeniAkce
2006-06-05+02:00
n3:zamer
n9:MSM6840770003
s:numberOfPages
14
n14:hasPublisher
Technical University of Lisbon
n11:isbn
1-4020-4994-3
n19:organizacniJednotka
21110