This HTML5 document contains 41 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
n7http://localhost/temp/predkladatel/
n12http://linked.opendata.cz/resource/domain/vavai/projekt/
n10http://linked.opendata.cz/resource/domain/vavai/riv/tvurce/
n17http://linked.opendata.cz/ontology/domain/vavai/
shttp://schema.org/
skoshttp://www.w3.org/2004/02/skos/core#
n3http://linked.opendata.cz/ontology/domain/vavai/riv/
n2http://linked.opendata.cz/resource/domain/vavai/vysledek/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n16http://linked.opendata.cz/resource/domain/vavai/vysledek/RIV%2F68407700%3A21110%2F03%3A01129160%21RIV08-GA0-21110___/
n4http://linked.opendata.cz/ontology/domain/vavai/riv/klicoveSlovo/
n9http://linked.opendata.cz/ontology/domain/vavai/riv/duvernostUdaju/
xsdhhttp://www.w3.org/2001/XMLSchema#
n18http://linked.opendata.cz/ontology/domain/vavai/riv/jazykVysledku/
n13http://linked.opendata.cz/ontology/domain/vavai/riv/aktivita/
n15http://linked.opendata.cz/ontology/domain/vavai/riv/druhVysledku/
n14http://linked.opendata.cz/ontology/domain/vavai/riv/obor/
n11http://reference.data.gov.uk/id/gregorian-year/

Statements

Subject Item
n2:RIV%2F68407700%3A21110%2F03%3A01129160%21RIV08-GA0-21110___
rdf:type
skos:Concept n17:Vysledek
dcterms:description
Množina v separabilním metrickém prostoru je borelovsky neprůhledná, pokud protíná každou borelovskou množinu kladné topologické dimenze. Ukazujeme, že existuje-li množina reálných čísel mohutnosti kontinua a univerzální míry nula, pak každý separabilní metrický prostor obsahuje je borelovsky neprůhlednou množinu univerzální míry nula. Podobné výsledky platí i pro jiné malé množiny. Pomocí neprůhlednosti konstruujeme množiny univerzální míry nula s kladnou Hausdorffovou dimenzí. A set in a separable metric space is called Borel-opaque if it meets every Borel set of positive topological dimension. We show that if there is a set of reals that is of cardinality the continuum and universal measure zero, then each separable space contains a Borel-opaque set that is of universal measure zero. Similar results hold for opaque sets that are perfectly meager, lambda sets etc., and can be extended to some nonseparable spaces. Using opacity we also construct universal measure zero sets of positive Hausdorff dimension. A set in a separable metric space is called Borel-opaque if it meets every Borel set of positive topological dimension. We show that if there is a set of reals that is of cardinality the continuum and universal measure zero, then each separable space contains a Borel-opaque set that is of universal measure zero. Similar results hold for opaque sets that are perfectly meager, lambda sets etc., and can be extended to some nonseparable spaces. Using opacity we also construct universal measure zero sets of positive Hausdorff dimension.
dcterms:title
Small Opaque Sets Small Opaque Sets Malé neprůhledné množiny
skos:prefLabel
Small Opaque Sets Malé neprůhledné množiny Small Opaque Sets
skos:notation
RIV/68407700:21110/03:01129160!RIV08-GA0-21110___
n3:strany
455;469
n3:aktivita
n13:P
n3:aktivity
P(GA201/00/0859)
n3:cisloPeriodika
2
n3:dodaniDat
n11:2008
n3:domaciTvurceVysledku
n10:8557098
n3:druhVysledku
n15:J
n3:duvernostUdaju
n9:S
n3:entitaPredkladatele
n16:predkladatel
n3:idSjednocenehoVysledku
627435
n3:idVysledku
RIV/68407700:21110/03:01129160
n3:jazykVysledku
n18:eng
n3:klicovaSlova
opaque set; topological dimension; universal measure zero
n3:klicoveSlovo
n4:opaque%20set n4:topological%20dimension n4:universal%20measure%20zero
n3:kodStatuVydavatele
US - Spojené státy americké
n3:kontrolniKodProRIV
[04B6928B9ADA]
n3:nazevZdroje
Real Analysis Exchange
n3:obor
n14:BA
n3:pocetDomacichTvurcuVysledku
1
n3:pocetTvurcuVysledku
1
n3:projekt
n12:GA201%2F00%2F0859
n3:rokUplatneniVysledku
n11:2003
n3:svazekPeriodika
28
n3:tvurceVysledku
Zindulka, Ondřej
s:issn
0147-1937
s:numberOfPages
15
n7:organizacniJednotka
21110