This HTML5 document contains 46 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
n20http://linked.opendata.cz/ontology/domain/vavai/riv/typAkce/
dctermshttp://purl.org/dc/terms/
n16http://purl.org/net/nknouf/ns/bibtex#
n9http://linked.opendata.cz/resource/domain/vavai/projekt/
n5http://linked.opendata.cz/resource/domain/vavai/riv/tvurce/
n8http://linked.opendata.cz/resource/domain/vavai/subjekt/
n7http://linked.opendata.cz/ontology/domain/vavai/
n22https://schema.org/
n14http://linked.opendata.cz/resource/domain/vavai/vysledek/RIV%2F67985840%3A_____%2F13%3A00395529%21RIV14-GA0-67985840/
shttp://schema.org/
skoshttp://www.w3.org/2004/02/skos/core#
n4http://linked.opendata.cz/ontology/domain/vavai/riv/
n18http://bibframe.org/vocab/
n2http://linked.opendata.cz/resource/domain/vavai/vysledek/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n17http://linked.opendata.cz/ontology/domain/vavai/riv/klicoveSlovo/
n10http://linked.opendata.cz/ontology/domain/vavai/riv/duvernostUdaju/
xsdhhttp://www.w3.org/2001/XMLSchema#
n15http://linked.opendata.cz/ontology/domain/vavai/riv/jazykVysledku/
n13http://linked.opendata.cz/ontology/domain/vavai/riv/aktivita/
n21http://linked.opendata.cz/ontology/domain/vavai/riv/druhVysledku/
n6http://linked.opendata.cz/ontology/domain/vavai/riv/obor/
n12http://reference.data.gov.uk/id/gregorian-year/

Statements

Subject Item
n2:RIV%2F67985840%3A_____%2F13%3A00395529%21RIV14-GA0-67985840
rdf:type
skos:Concept n7:Vysledek
dcterms:description
We say that a graph with n vertices is c-Ramsey if it does not contain either a clique or an independent set of size c logn. We define a CNF formula which expresses this property for a graph G. We show a superpolynomial lower bound on the length of resolution proofs that G is c-Ramsey, for every graph G. Our proof makes use of the fact that every Ramsey graph must contain a large subgraph with some of the statistical properties of the random graph. We say that a graph with n vertices is c-Ramsey if it does not contain either a clique or an independent set of size c logn. We define a CNF formula which expresses this property for a graph G. We show a superpolynomial lower bound on the length of resolution proofs that G is c-Ramsey, for every graph G. Our proof makes use of the fact that every Ramsey graph must contain a large subgraph with some of the statistical properties of the random graph.
dcterms:title
The complexity of proving that a graph is Ramsey The complexity of proving that a graph is Ramsey
skos:prefLabel
The complexity of proving that a graph is Ramsey The complexity of proving that a graph is Ramsey
skos:notation
RIV/67985840:_____/13:00395529!RIV14-GA0-67985840
n7:predkladatel
n8:ico%3A67985840
n4:aktivita
n13:P n13:I
n4:aktivity
I, P(GBP202/12/G061), P(IAA100190902)
n4:dodaniDat
n12:2014
n4:domaciTvurceVysledku
n5:6610714 n5:8729174
n4:druhVysledku
n21:D
n4:duvernostUdaju
n10:S
n4:entitaPredkladatele
n14:predkladatel
n4:idSjednocenehoVysledku
66485
n4:idVysledku
RIV/67985840:_____/13:00395529
n4:jazykVysledku
n15:eng
n4:klicovaSlova
CNF formulas; independent set; lower bounds
n4:klicoveSlovo
n17:CNF%20formulas n17:independent%20set n17:lower%20bounds
n4:kontrolniKodProRIV
[259BDE06F045]
n4:mistoKonaniAkce
Riga
n4:mistoVydani
Berlin
n4:nazevZdroje
Automata, Languages, and Programming. Part I
n4:obor
n6:BA
n4:pocetDomacichTvurcuVysledku
2
n4:pocetTvurcuVysledku
4
n4:projekt
n9:GBP202%2F12%2FG061 n9:IAA100190902
n4:rokUplatneniVysledku
n12:2013
n4:tvurceVysledku
Pudlák, Pavel Lauria, M. Thapen, Neil Rödl, V.
n4:typAkce
n20:WRD
n4:zahajeniAkce
2013-07-08+02:00
s:numberOfPages
12
n18:doi
10.1007/978-3-642-39206-1_58
n16:hasPublisher
Springer-Verlag
n22:isbn
978-3-642-39205-4