This HTML5 document contains 42 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
n15http://linked.opendata.cz/resource/domain/vavai/riv/tvurce/
n4http://linked.opendata.cz/resource/domain/vavai/projekt/
n19http://linked.opendata.cz/resource/domain/vavai/subjekt/
n8http://linked.opendata.cz/ontology/domain/vavai/
n12http://linked.opendata.cz/resource/domain/vavai/zamer/
shttp://schema.org/
skoshttp://www.w3.org/2004/02/skos/core#
n3http://linked.opendata.cz/ontology/domain/vavai/riv/
n10http://bibframe.org/vocab/
n2http://linked.opendata.cz/resource/domain/vavai/vysledek/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n13http://linked.opendata.cz/ontology/domain/vavai/riv/klicoveSlovo/
n14http://linked.opendata.cz/ontology/domain/vavai/riv/duvernostUdaju/
xsdhhttp://www.w3.org/2001/XMLSchema#
n18http://linked.opendata.cz/resource/domain/vavai/vysledek/RIV%2F67985840%3A_____%2F11%3A00365416%21RIV12-AV0-67985840/
n20http://linked.opendata.cz/ontology/domain/vavai/riv/jazykVysledku/
n11http://linked.opendata.cz/ontology/domain/vavai/riv/aktivita/
n17http://linked.opendata.cz/ontology/domain/vavai/riv/obor/
n16http://linked.opendata.cz/ontology/domain/vavai/riv/druhVysledku/
n9http://reference.data.gov.uk/id/gregorian-year/

Statements

Subject Item
n2:RIV%2F67985840%3A_____%2F11%3A00365416%21RIV12-AV0-67985840
rdf:type
n8:Vysledek skos:Concept
dcterms:description
The Dirichlet problem for the Stokes equations is studied in a planar domain. We construct a solution of this problem in form of appropriate potentials and determine the unknown source densities via integral equation systems on the boundary of the domain. The solution is given explicitly in the form of a series. As a consequence we determine a solution of the Dirichlet problem for a compressible Stokes system and a solution of a boundary value problem on a domain with cracks. The Dirichlet problem for the Stokes equations is studied in a planar domain. We construct a solution of this problem in form of appropriate potentials and determine the unknown source densities via integral equation systems on the boundary of the domain. The solution is given explicitly in the form of a series. As a consequence we determine a solution of the Dirichlet problem for a compressible Stokes system and a solution of a boundary value problem on a domain with cracks.
dcterms:title
The planar Dirichlet problem for the Stokes equations The planar Dirichlet problem for the Stokes equations
skos:prefLabel
The planar Dirichlet problem for the Stokes equations The planar Dirichlet problem for the Stokes equations
skos:notation
RIV/67985840:_____/11:00365416!RIV12-AV0-67985840
n8:predkladatel
n19:ico%3A67985840
n3:aktivita
n11:Z n11:P
n3:aktivity
P(IAA100190804), Z(AV0Z10190503)
n3:cisloPeriodika
9
n3:dodaniDat
n9:2012
n3:domaciTvurceVysledku
n15:3116344
n3:druhVysledku
n16:J
n3:duvernostUdaju
n14:S
n3:entitaPredkladatele
n18:predkladatel
n3:idSjednocenehoVysledku
220466
n3:idVysledku
RIV/67985840:_____/11:00365416
n3:jazykVysledku
n20:eng
n3:klicovaSlova
Stokes system; single-layer potential; double-layer potential
n3:klicoveSlovo
n13:single-layer%20potential n13:Stokes%20system n13:double-layer%20potential
n3:kodStatuVydavatele
GB - Spojené království Velké Británie a Severního Irska
n3:kontrolniKodProRIV
[C34735A0E99C]
n3:nazevZdroje
Mathematical Methods in the Applied Sciences
n3:obor
n17:BA
n3:pocetDomacichTvurcuVysledku
1
n3:pocetTvurcuVysledku
2
n3:projekt
n4:IAA100190804
n3:rokUplatneniVysledku
n9:2011
n3:svazekPeriodika
34
n3:tvurceVysledku
Medková, Dagmar Varnhorn, W.
n3:wos
000291440300006
n3:zamer
n12:AV0Z10190503
s:issn
0170-4214
s:numberOfPages
13
n10:doi
10.1002/mma.1425