This HTML5 document contains 39 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
n3http://purl.org/net/nknouf/ns/bibtex#
n16http://linked.opendata.cz/resource/domain/vavai/projekt/
n7http://linked.opendata.cz/resource/domain/vavai/riv/tvurce/
n10http://linked.opendata.cz/ontology/domain/vavai/
n11http://linked.opendata.cz/resource/domain/vavai/vysledek/RIV%2F67985840%3A_____%2F09%3A00330848%21RIV10-AV0-67985840/
n19http://linked.opendata.cz/resource/domain/vavai/zamer/
n6https://schema.org/
shttp://schema.org/
skoshttp://www.w3.org/2004/02/skos/core#
n4http://linked.opendata.cz/ontology/domain/vavai/riv/
n2http://linked.opendata.cz/resource/domain/vavai/vysledek/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n5http://linked.opendata.cz/ontology/domain/vavai/riv/klicoveSlovo/
n9http://linked.opendata.cz/ontology/domain/vavai/riv/duvernostUdaju/
xsdhhttp://www.w3.org/2001/XMLSchema#
n18http://linked.opendata.cz/ontology/domain/vavai/riv/jazykVysledku/
n14http://linked.opendata.cz/ontology/domain/vavai/riv/aktivita/
n17http://linked.opendata.cz/ontology/domain/vavai/riv/druhVysledku/
n15http://linked.opendata.cz/ontology/domain/vavai/riv/obor/
n13http://reference.data.gov.uk/id/gregorian-year/

Statements

Subject Item
n2:RIV%2F67985840%3A_____%2F09%3A00330848%21RIV10-AV0-67985840
rdf:type
skos:Concept n10:Vysledek
dcterms:description
In this work we investigate the solvability and the approximate construction of solutions of certain types of regular non-linear boundary value problems for systems of ordinary differential equations on a compact interval. According to the scheme suggested, the solution is sought for as the limit of a uniformly convergent parametrised sequence of functions constructed in an analytical form and depending on the properties of concrete boundary conditions and non-linearities. The values of the numerical parameters introduced artificially into the scheme should then be determined by solving a certain system of algebraic or transcendental equations. The work consists of 10 sections, the theoretical results are illustrated by examples. A number of exercises are also given. In this work we investigate the solvability and the approximate construction of solutions of certain types of regular non-linear boundary value problems for systems of ordinary differential equations on a compact interval. According to the scheme suggested, the solution is sought for as the limit of a uniformly convergent parametrised sequence of functions constructed in an analytical form and depending on the properties of concrete boundary conditions and non-linearities. The values of the numerical parameters introduced artificially into the scheme should then be determined by solving a certain system of algebraic or transcendental equations. The work consists of 10 sections, the theoretical results are illustrated by examples. A number of exercises are also given.
dcterms:title
Successive Approximation Techniques in Non-Linear Boundary Value Problems Successive Approximation Techniques in Non-Linear Boundary Value Problems
skos:prefLabel
Successive Approximation Techniques in Non-Linear Boundary Value Problems Successive Approximation Techniques in Non-Linear Boundary Value Problems
skos:notation
RIV/67985840:_____/09:00330848!RIV10-AV0-67985840
n4:aktivita
n14:Z n14:P
n4:aktivity
P(GA201/06/0254), Z(AV0Z10190503)
n4:dodaniDat
n13:2010
n4:domaciTvurceVysledku
n7:1189565
n4:druhVysledku
n17:C
n4:duvernostUdaju
n9:S
n4:entitaPredkladatele
n11:predkladatel
n4:idSjednocenehoVysledku
344665
n4:idVysledku
RIV/67985840:_____/09:00330848
n4:jazykVysledku
n18:eng
n4:klicovaSlova
functional-differential equation; special deviations of argument; linear boundary value problem
n4:klicoveSlovo
n5:functional-differential%20equation n5:special%20deviations%20of%20argument n5:linear%20boundary%20value%20problem
n4:kontrolniKodProRIV
[DD84150EF84F]
n4:mistoVydani
New York
n4:nazevZdroje
Handbook of Differential Equations: Ordinary Differential Equations, 4
n4:obor
n15:BA
n4:pocetDomacichTvurcuVysledku
1
n4:pocetStranKnihy
702
n4:pocetTvurcuVysledku
2
n4:projekt
n16:GA201%2F06%2F0254
n4:rokUplatneniVysledku
n13:2009
n4:tvurceVysledku
Ronto, M. Rontó, András
n4:zamer
n19:AV0Z10190503
s:numberOfPages
152
n3:hasPublisher
Elsevier
n6:isbn
978-0-444-53031-8