This HTML5 document contains 42 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
n18http://linked.opendata.cz/resource/domain/vavai/projekt/
n16http://linked.opendata.cz/resource/domain/vavai/riv/tvurce/
n14http://linked.opendata.cz/ontology/domain/vavai/
n6http://linked.opendata.cz/resource/domain/vavai/zamer/
shttp://schema.org/
skoshttp://www.w3.org/2004/02/skos/core#
n4http://linked.opendata.cz/ontology/domain/vavai/riv/
n2http://linked.opendata.cz/resource/domain/vavai/vysledek/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n12http://linked.opendata.cz/ontology/domain/vavai/riv/klicoveSlovo/
n13http://linked.opendata.cz/ontology/domain/vavai/riv/duvernostUdaju/
xsdhhttp://www.w3.org/2001/XMLSchema#
n17http://linked.opendata.cz/ontology/domain/vavai/riv/jazykVysledku/
n9http://linked.opendata.cz/ontology/domain/vavai/riv/aktivita/
n10http://linked.opendata.cz/ontology/domain/vavai/riv/druhVysledku/
n11http://linked.opendata.cz/resource/domain/vavai/vysledek/RIV%2F67985840%3A_____%2F05%3A00030787%21RIV06-AV0-67985840/
n8http://linked.opendata.cz/ontology/domain/vavai/riv/obor/
n5http://reference.data.gov.uk/id/gregorian-year/

Statements

Subject Item
n2:RIV%2F67985840%3A_____%2F05%3A00030787%21RIV06-AV0-67985840
rdf:type
n14:Vysledek skos:Concept
dcterms:description
We show that each power bounded operator with spectral radius equal to one a reflexive Banach space has a nonzero vector which is not supercyclic. Equivalently, the operator has a nontrivial closed invariant homogeneous subset. Moreover, the operator has a nontrivial closed invariant cone if 1 belongs to its spectrum. This generalizes the corresponding results for Hilbert space operators. For non-reflexive Banach spaces these results remain true; however, the non-supercyclic vector (inavariant cone, respectively) relates to the adjoint of the operator. We show that each power bounded operator with spectral radius equal to one a reflexive Banach space has a nonzero vector which is not supercyclic. Equivalently, the operator has a nontrivial closed invariant homogeneous subset. Moreover, the operator has a nontrivial closed invariant cone if 1 belongs to its spectrum. This generalizes the corresponding results for Hilbert space operators. For non-reflexive Banach spaces these results remain true; however, the non-supercyclic vector (inavariant cone, respectively) relates to the adjoint of the operator. Každý mocninově ohraničený operátor v reflexivním Banachově prostoru, jehož spektrum obsahuje 1, má netriviální invariantní kužel.
dcterms:title
Mocninově ohraničené operátory a supercyklické vektory II Power bounded operators and supercyclic vectors II Power bounded operators and supercyclic vectors II
skos:prefLabel
Power bounded operators and supercyclic vectors II Mocninově ohraničené operátory a supercyklické vektory II Power bounded operators and supercyclic vectors II
skos:notation
RIV/67985840:_____/05:00030787!RIV06-AV0-67985840
n4:strany
2997;3004
n4:aktivita
n9:P n9:Z
n4:aktivity
P(GA201/03/0041), Z(AV0Z10190503)
n4:cisloPeriodika
10
n4:dodaniDat
n5:2006
n4:domaciTvurceVysledku
n16:8840199
n4:druhVysledku
n10:J
n4:duvernostUdaju
n13:S
n4:entitaPredkladatele
n11:predkladatel
n4:idSjednocenehoVysledku
537403
n4:idVysledku
RIV/67985840:_____/05:00030787
n4:jazykVysledku
n17:eng
n4:klicovaSlova
supercyclic vectors; invariant subspace problem; positive operators
n4:klicoveSlovo
n12:invariant%20subspace%20problem n12:positive%20operators n12:supercyclic%20vectors
n4:kodStatuVydavatele
US - Spojené státy americké
n4:kontrolniKodProRIV
[B7E385EBFFDD]
n4:nazevZdroje
Proceedings of the American Mathematical Society
n4:obor
n8:BA
n4:pocetDomacichTvurcuVysledku
1
n4:pocetTvurcuVysledku
1
n4:projekt
n18:GA201%2F03%2F0041
n4:rokUplatneniVysledku
n5:2005
n4:svazekPeriodika
133
n4:tvurceVysledku
Müller, Vladimír
n4:zamer
n6:AV0Z10190503
s:issn
0002-9939
s:numberOfPages
8