This HTML5 document contains 43 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
n21http://linked.opendata.cz/ontology/domain/vavai/riv/typAkce/
dctermshttp://purl.org/dc/terms/
n10http://purl.org/net/nknouf/ns/bibtex#
n17http://linked.opendata.cz/resource/domain/vavai/projekt/
n9http://linked.opendata.cz/resource/domain/vavai/riv/tvurce/
n18http://linked.opendata.cz/ontology/domain/vavai/
n15http://linked.opendata.cz/resource/domain/vavai/zamer/
n11https://schema.org/
shttp://schema.org/
skoshttp://www.w3.org/2004/02/skos/core#
n3http://linked.opendata.cz/ontology/domain/vavai/riv/
n2http://linked.opendata.cz/resource/domain/vavai/vysledek/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n5http://linked.opendata.cz/resource/domain/vavai/vysledek/RIV%2F67985807%3A_____%2F08%3A00331008%21RIV10-AV0-67985807/
n4http://linked.opendata.cz/ontology/domain/vavai/riv/klicoveSlovo/
n19http://linked.opendata.cz/ontology/domain/vavai/riv/duvernostUdaju/
xsdhhttp://www.w3.org/2001/XMLSchema#
n16http://linked.opendata.cz/ontology/domain/vavai/riv/aktivita/
n14http://linked.opendata.cz/ontology/domain/vavai/riv/jazykVysledku/
n13http://linked.opendata.cz/ontology/domain/vavai/riv/druhVysledku/
n8http://linked.opendata.cz/ontology/domain/vavai/riv/obor/
n7http://reference.data.gov.uk/id/gregorian-year/

Statements

Subject Item
n2:RIV%2F67985807%3A_____%2F08%3A00331008%21RIV10-AV0-67985807
rdf:type
skos:Concept n18:Vysledek
dcterms:description
There is a gap between the theoretical results of regularization theory and practical suitability of regularization derived networks (RN). On the other hand, radial basis function networks (RBF) that can be seen as a special case of regularization networks, have a rich selection of learning algorithms. In this work we study a relationship between RN and RBF, and show that theoretical estimates for RN hold for a concrete RBF applied on real-world data. There is a gap between the theoretical results of regularization theory and practical suitability of regularization derived networks (RN). On the other hand, radial basis function networks (RBF) that can be seen as a special case of regularization networks, have a rich selection of learning algorithms. In this work we study a relationship between RN and RBF, and show that theoretical estimates for RN hold for a concrete RBF applied on real-world data.
dcterms:title
Supervised Learning Errors by Radial Basis Function Neural Networks and Regularization Networks Supervised Learning Errors by Radial Basis Function Neural Networks and Regularization Networks
skos:prefLabel
Supervised Learning Errors by Radial Basis Function Neural Networks and Regularization Networks Supervised Learning Errors by Radial Basis Function Neural Networks and Regularization Networks
skos:notation
RIV/67985807:_____/08:00331008!RIV10-AV0-67985807
n3:aktivita
n16:P n16:Z
n3:aktivity
P(GA201/08/1744), Z(AV0Z10300504)
n3:dodaniDat
n7:2010
n3:domaciTvurceVysledku
n9:3413527 n9:8926050
n3:druhVysledku
n13:D
n3:duvernostUdaju
n19:S
n3:entitaPredkladatele
n5:predkladatel
n3:idSjednocenehoVysledku
398378
n3:idVysledku
RIV/67985807:_____/08:00331008
n3:jazykVysledku
n14:eng
n3:klicovaSlova
regularization; radial basis function; training error
n3:klicoveSlovo
n4:regularization n4:radial%20basis%20function n4:training%20error
n3:kontrolniKodProRIV
[F04412F4E147]
n3:mistoKonaniAkce
Hainan Island
n3:mistoVydani
Los Alamitos
n3:nazevZdroje
Proceedings of Second International Conference on Future Generation Communication and Networking Symposia
n3:obor
n8:IN
n3:pocetDomacichTvurcuVysledku
2
n3:pocetTvurcuVysledku
2
n3:projekt
n17:GA201%2F08%2F1744
n3:rokUplatneniVysledku
n7:2008
n3:tvurceVysledku
Neruda, Roman Kudová, Petra
n3:typAkce
n21:WRD
n3:wos
000270432000079
n3:zahajeniAkce
2008-12-13+01:00
n3:zamer
n15:AV0Z10300504
s:numberOfPages
4
n10:hasPublisher
IEEE Computer Society
n11:isbn
978-1-4244-3430-5