This HTML5 document contains 42 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
n13http://linked.opendata.cz/ontology/domain/vavai/riv/typAkce/
dctermshttp://purl.org/dc/terms/
n20http://purl.org/net/nknouf/ns/bibtex#
n17http://linked.opendata.cz/resource/domain/vavai/riv/tvurce/
n9http://linked.opendata.cz/resource/domain/vavai/projekt/
n7http://linked.opendata.cz/ontology/domain/vavai/
n16http://linked.opendata.cz/resource/domain/vavai/zamer/
shttp://schema.org/
skoshttp://www.w3.org/2004/02/skos/core#
n3http://linked.opendata.cz/ontology/domain/vavai/riv/
n2http://linked.opendata.cz/resource/domain/vavai/vysledek/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n4http://linked.opendata.cz/ontology/domain/vavai/riv/klicoveSlovo/
n14http://linked.opendata.cz/ontology/domain/vavai/riv/duvernostUdaju/
xsdhhttp://www.w3.org/2001/XMLSchema#
n18http://linked.opendata.cz/ontology/domain/vavai/riv/jazykVysledku/
n11http://linked.opendata.cz/ontology/domain/vavai/riv/aktivita/
n12http://linked.opendata.cz/ontology/domain/vavai/riv/obor/
n19http://linked.opendata.cz/ontology/domain/vavai/riv/druhVysledku/
n8http://linked.opendata.cz/resource/domain/vavai/vysledek/RIV%2F67985556%3A_____%2F02%3A16030055%21RIV%2F2004%2FAV0%2FA16004%2FN/
n5http://reference.data.gov.uk/id/gregorian-year/

Statements

Subject Item
n2:RIV%2F67985556%3A_____%2F02%3A16030055%21RIV%2F2004%2FAV0%2FA16004%2FN
rdf:type
n7:Vysledek skos:Concept
dcterms:description
We prove a central limit theorem for conditionally centered random field, under condition of strict positivity of the empirical variance per observation. We use a random normalization, which fits to non-stationary situations. The theorem directly applied to Markov random fields, including the case of phase transition and lack of stationarity. A consequence is the asymptotic normality of a statistics for testing a composite hypotheses on a parameter of Markov fields in complete generality. We prove a central limit theorem for conditionally centered random field, under condition of strict positivity of the empirical variance per observation. We use a random normalization, which fits to non-stationary situations. The theorem directly applied to Markov random fields, including the case of phase transition and lack of stationarity. A consequence is the asymptotic normality of a statistics for testing a composite hypotheses on a parameter of Markov fields in complete generality.
dcterms:title
A central limit theorem for conditionally centred random fields with an application to testing statistical hypotheses. A central limit theorem for conditionally centred random fields with an application to testing statistical hypotheses.
skos:prefLabel
A central limit theorem for conditionally centred random fields with an application to testing statistical hypotheses. A central limit theorem for conditionally centred random fields with an application to testing statistical hypotheses.
skos:notation
RIV/67985556:_____/02:16030055!RIV/2004/AV0/A16004/N
n3:strany
209;223
n3:aktivita
n11:P n11:Z
n3:aktivity
P(GA201/99/0269), Z(AV0Z1075907)
n3:dodaniDat
n5:2004
n3:domaciTvurceVysledku
n17:1864386
n3:druhVysledku
n19:D
n3:duvernostUdaju
n14:S
n3:entitaPredkladatele
n8:predkladatel
n3:idSjednocenehoVysledku
636929
n3:idVysledku
RIV/67985556:_____/02:16030055
n3:jazykVysledku
n18:eng
n3:klicovaSlova
central limit theorem; conditionally centred random fields; composite hypotheses
n3:klicoveSlovo
n4:conditionally%20centred%20random%20fields n4:composite%20hypotheses n4:central%20limit%20theorem
n3:kontrolniKodProRIV
[F5666BFDA81B]
n3:mistoKonaniAkce
Balatonlelle [HU]
n3:mistoVydani
Budapest
n3:nazevZdroje
Limit Theorems in Probability and Statistics.
n3:obor
n12:BA
n3:pocetDomacichTvurcuVysledku
1
n3:pocetTvurcuVysledku
1
n3:pocetUcastnikuAkce
0
n3:pocetZahranicnichUcastnikuAkce
0
n3:projekt
n9:GA201%2F99%2F0269
n3:rokUplatneniVysledku
n5:2002
n3:tvurceVysledku
Janžura, Martin
n3:typAkce
n13:WRD
n3:zahajeniAkce
1999-06-28+02:00
n3:zamer
n16:AV0Z1075907
s:numberOfPages
15
n20:hasPublisher
János Bolyai Mathematical Society