This HTML5 document contains 46 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
n15http://linked.opendata.cz/ontology/domain/vavai/riv/typAkce/
dctermshttp://purl.org/dc/terms/
n14http://purl.org/net/nknouf/ns/bibtex#
n17http://linked.opendata.cz/resource/domain/vavai/projekt/
n9http://linked.opendata.cz/resource/domain/vavai/riv/tvurce/
n13http://linked.opendata.cz/ontology/domain/vavai/
n20https://schema.org/
shttp://schema.org/
skoshttp://www.w3.org/2004/02/skos/core#
n3http://linked.opendata.cz/ontology/domain/vavai/riv/
n7http://linked.opendata.cz/resource/domain/vavai/vysledek/RIV%2F63839172%3A_____%2F14%3A10130424%21RIV15-MSM-63839172/
n2http://linked.opendata.cz/resource/domain/vavai/vysledek/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n11http://linked.opendata.cz/ontology/domain/vavai/riv/klicoveSlovo/
n4http://linked.opendata.cz/ontology/domain/vavai/riv/duvernostUdaju/
xsdhhttp://www.w3.org/2001/XMLSchema#
n16http://linked.opendata.cz/ontology/domain/vavai/riv/jazykVysledku/
n10http://linked.opendata.cz/ontology/domain/vavai/riv/aktivita/
n19http://linked.opendata.cz/ontology/domain/vavai/riv/obor/
n18http://linked.opendata.cz/ontology/domain/vavai/riv/druhVysledku/
n8http://reference.data.gov.uk/id/gregorian-year/

Statements

Subject Item
n2:RIV%2F63839172%3A_____%2F14%3A10130424%21RIV15-MSM-63839172
rdf:type
skos:Concept n13:Vysledek
dcterms:description
The paper deals with classification of attacks in IP telephony based on the multilayer perceptron neural network. The proposed solution MLP NN in the paper is used as a classifier of attacks in a distributed monitoring network of independent honeypot probes. The trained neural network is capable to classify the most common used VoIP attacks. With the proposed approach is possible to detect malicious behavior in a different part of networks, which are logically or geographically divided and use the information from one network to harden security in other networks. The paper deals with classification of attacks in IP telephony based on the multilayer perceptron neural network. The proposed solution MLP NN in the paper is used as a classifier of attacks in a distributed monitoring network of independent honeypot probes. The trained neural network is capable to classify the most common used VoIP attacks. With the proposed approach is possible to detect malicious behavior in a different part of networks, which are logically or geographically divided and use the information from one network to harden security in other networks.
dcterms:title
Application of Artificial Intelligence on Classification of Attacks in IP Telephony Application of Artificial Intelligence on Classification of Attacks in IP Telephony
skos:prefLabel
Application of Artificial Intelligence on Classification of Attacks in IP Telephony Application of Artificial Intelligence on Classification of Attacks in IP Telephony
skos:notation
RIV/63839172:_____/14:10130424!RIV15-MSM-63839172
n3:aktivita
n10:P
n3:aktivity
P(LM2010005)
n3:dodaniDat
n8:2015
n3:domaciTvurceVysledku
n9:8051283 n9:7890230 n9:3174182 n9:2246244
n3:druhVysledku
n18:D
n3:duvernostUdaju
n4:S
n3:entitaPredkladatele
n7:predkladatel
n3:idSjednocenehoVysledku
3714
n3:idVysledku
RIV/63839172:_____/14:10130424
n3:jazykVysledku
n16:eng
n3:klicovaSlova
SIP attacks; neural network; multilayer perceptron network; Attack classification
n3:klicoveSlovo
n11:Attack%20classification n11:neural%20network n11:multilayer%20perceptron%20network n11:SIP%20attacks
n3:kontrolniKodProRIV
[196E6A9E60B5]
n3:mistoKonaniAkce
Santorini
n3:mistoVydani
neuveden
n3:nazevZdroje
Advances in Information Science and Applications - Volume II
n3:obor
n19:IN
n3:pocetDomacichTvurcuVysledku
4
n3:pocetTvurcuVysledku
4
n3:projekt
n17:LM2010005
n3:rokUplatneniVysledku
n8:2014
n3:tvurceVysledku
Šafařík, Jakub Vozňák, Miroslav Šlachta, Jiří Řezáč, Filip
n3:typAkce
n15:WRD
n3:zahajeniAkce
2014-07-17+02:00
s:issn
1790-5109
s:numberOfPages
6
n14:hasPublisher
Neuveden
n20:isbn
978-1-61804-237-8