This HTML5 document contains 43 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
n11http://localhost/temp/predkladatel/
n5http://linked.opendata.cz/resource/domain/vavai/riv/tvurce/
n12http://linked.opendata.cz/resource/domain/vavai/vysledek/RIV%2F61989592%3A15310%2F07%3A00004804%21RIV08-MSM-15310___/
n15http://linked.opendata.cz/ontology/domain/vavai/
n6http://linked.opendata.cz/resource/domain/vavai/zamer/
shttp://schema.org/
skoshttp://www.w3.org/2004/02/skos/core#
n4http://linked.opendata.cz/ontology/domain/vavai/riv/
n2http://linked.opendata.cz/resource/domain/vavai/vysledek/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n14http://linked.opendata.cz/ontology/domain/vavai/riv/klicoveSlovo/
n13http://linked.opendata.cz/ontology/domain/vavai/riv/duvernostUdaju/
xsdhhttp://www.w3.org/2001/XMLSchema#
n16http://linked.opendata.cz/ontology/domain/vavai/riv/aktivita/
n7http://linked.opendata.cz/ontology/domain/vavai/riv/jazykVysledku/
n18http://linked.opendata.cz/ontology/domain/vavai/riv/druhVysledku/
n17http://linked.opendata.cz/ontology/domain/vavai/riv/obor/
n9http://reference.data.gov.uk/id/gregorian-year/

Statements

Subject Item
n2:RIV%2F61989592%3A15310%2F07%3A00004804%21RIV08-MSM-15310___
rdf:type
n15:Vysledek skos:Concept
dcterms:description
By a near λ-lattice is meant an upper λ-semilattice where is defined a partial binary operation x Λ y with respect to the induced order whenever x,y has a common lower bound. Alternatively, a near λ-lattice can be described as an algebra with one ternary operation satisfying nine simple conditions. Hence, the class of near λ-lattices is a quasivariety. A λ-semilattice A=(A; v) is said to have sectional (antitone) involutions if for each $a\in A$ there exists an (antitone) involution on [a,1] where 1 is the greatest element of A. If this antitone involution is a~complementation, A is called an ortho λ-semilattice. We characterize these near λ-lattices by certain identities. Near λ-svaz je horní Near λ-polosvaz, na kterém je definována parciální binární operace (na každé sekci). Tuto algebru lze axiomatizovat pomocí devíti jednoduchých axiomů tak, že třída near λ-svazů je kvazivarieta. Jsou studovány near λ-svazy se sekčními antitonními involucemi. By a near λ-lattice is meant an upper λ-semilattice where is defined a partial binary operation x Λ y with respect to the induced order whenever x,y has a common lower bound. Alternatively, a near λ-lattice can be described as an algebra with one ternary operation satisfying nine simple conditions. Hence, the class of near λ-lattices is a quasivariety. A λ-semilattice A=(A; v) is said to have sectional (antitone) involutions if for each $a\in A$ there exists an (antitone) involution on [a,1] where 1 is the greatest element of A. If this antitone involution is a~complementation, A is called an ortho λ-semilattice. We characterize these near λ-lattices by certain identities.
dcterms:title
Near λ-lattices Near λ-lattices Near λ-svazy
skos:prefLabel
Near λ-lattices Near λ-lattices Near λ-svazy
skos:notation
RIV/61989592:15310/07:00004804!RIV08-MSM-15310___
n4:strany
283-294
n4:aktivita
n16:Z
n4:aktivity
Z(MSM6198959214)
n4:cisloPeriodika
1
n4:dodaniDat
n9:2008
n4:domaciTvurceVysledku
n5:9055819 n5:8866791
n4:druhVysledku
n18:J
n4:duvernostUdaju
n13:S
n4:entitaPredkladatele
n12:predkladatel
n4:idSjednocenehoVysledku
436541
n4:idVysledku
RIV/61989592:15310/07:00004804
n4:jazykVysledku
n7:eng
n4:klicovaSlova
ortho λ-semilattice; λ-semilattice; λ-lattice
n4:klicoveSlovo
n14:%CE%BB-semilattice n14:ortho%20%CE%BB-semilattice n14:%CE%BB-lattice
n4:kodStatuVydavatele
KR - Korejská republika
n4:kontrolniKodProRIV
[D8DAAF2940C4]
n4:nazevZdroje
Kyungpook Mathematical Journal
n4:obor
n17:BA
n4:pocetDomacichTvurcuVysledku
2
n4:pocetTvurcuVysledku
2
n4:rokUplatneniVysledku
n9:2007
n4:svazekPeriodika
47
n4:tvurceVysledku
Kolařík, Miroslav Chajda, Ivan
n4:zamer
n6:MSM6198959214
s:issn
0454-8124
s:numberOfPages
12
n11:organizacniJednotka
15310