This HTML5 document contains 43 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
n19http://linked.opendata.cz/ontology/domain/vavai/riv/typAkce/
dctermshttp://purl.org/dc/terms/
n21http://localhost/temp/predkladatel/
n18http://purl.org/net/nknouf/ns/bibtex#
n16http://linked.opendata.cz/resource/domain/vavai/projekt/
n13http://linked.opendata.cz/resource/domain/vavai/riv/tvurce/
n10http://linked.opendata.cz/resource/domain/vavai/subjekt/
n9http://linked.opendata.cz/ontology/domain/vavai/
n20https://schema.org/
shttp://schema.org/
skoshttp://www.w3.org/2004/02/skos/core#
n3http://linked.opendata.cz/ontology/domain/vavai/riv/
n2http://linked.opendata.cz/resource/domain/vavai/vysledek/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n8http://linked.opendata.cz/ontology/domain/vavai/riv/klicoveSlovo/
n22http://linked.opendata.cz/ontology/domain/vavai/riv/duvernostUdaju/
xsdhhttp://www.w3.org/2001/XMLSchema#
n7http://linked.opendata.cz/ontology/domain/vavai/riv/aktivita/
n15http://linked.opendata.cz/ontology/domain/vavai/riv/jazykVysledku/
n4http://linked.opendata.cz/resource/domain/vavai/vysledek/RIV%2F61989100%3A27360%2F13%3A86086645%21RIV14-MSM-27360___/
n14http://linked.opendata.cz/ontology/domain/vavai/riv/druhVysledku/
n5http://linked.opendata.cz/ontology/domain/vavai/riv/obor/
n11http://reference.data.gov.uk/id/gregorian-year/

Statements

Subject Item
n2:RIV%2F61989100%3A27360%2F13%3A86086645%21RIV14-MSM-27360___
rdf:type
skos:Concept n9:Vysledek
dcterms:description
This paper deals with application of artificial neural network in prediction of diffuse reflectance spectra. Spring barley plants were stressed by drought for nine day, during this period spectra of diffuse reflectance were measured. Experimentally measured diffuse reflectance spectra were used as an input data for training, validation and prediction of the artificial neural network. Very good agreement between experimental data and predicted model was achieved. As it is demonstrated artificial neural network may be used as an effective tool for plant spectral properties modelling. This paper deals with application of artificial neural network in prediction of diffuse reflectance spectra. Spring barley plants were stressed by drought for nine day, during this period spectra of diffuse reflectance were measured. Experimentally measured diffuse reflectance spectra were used as an input data for training, validation and prediction of the artificial neural network. Very good agreement between experimental data and predicted model was achieved. As it is demonstrated artificial neural network may be used as an effective tool for plant spectral properties modelling.
dcterms:title
ARTIFICIAL NEURAL NETWORK APPLICATION IN DIFFUSE REFLECTANCE PREDICTION ARTIFICIAL NEURAL NETWORK APPLICATION IN DIFFUSE REFLECTANCE PREDICTION
skos:prefLabel
ARTIFICIAL NEURAL NETWORK APPLICATION IN DIFFUSE REFLECTANCE PREDICTION ARTIFICIAL NEURAL NETWORK APPLICATION IN DIFFUSE REFLECTANCE PREDICTION
skos:notation
RIV/61989100:27360/13:86086645!RIV14-MSM-27360___
n9:predkladatel
n10:orjk%3A27360
n3:aktivita
n7:P
n3:aktivity
P(ED0040/01/01), P(EE2.3.30.0016)
n3:dodaniDat
n11:2014
n3:domaciTvurceVysledku
n13:3413357
n3:druhVysledku
n14:D
n3:duvernostUdaju
n22:S
n3:entitaPredkladatele
n4:predkladatel
n3:idSjednocenehoVysledku
62137
n3:idVysledku
RIV/61989100:27360/13:86086645
n3:jazykVysledku
n15:eng
n3:klicovaSlova
ANN, PCA, MLP, reflectance, Spring barley
n3:klicoveSlovo
n8:reflectance n8:PCA n8:Spring%20barley n8:ANN n8:MLP
n3:kontrolniKodProRIV
[004B4DEBAB43]
n3:mistoKonaniAkce
Hradec Králové
n3:mistoVydani
Hradec Králové
n3:nazevZdroje
MMK 2013 : Mezinárodní Masarykova konference pro doktorandy a mladé vědecké pracovníky : [9.-13. prosince 2013, Hradec Králové]
n3:obor
n5:BO
n3:pocetDomacichTvurcuVysledku
1
n3:pocetTvurcuVysledku
1
n3:projekt
n16:EE2.3.30.0016 n16:ED0040%2F01%2F01
n3:rokUplatneniVysledku
n11:2013
n3:tvurceVysledku
Kvíčala, Miroslav
n3:typAkce
n19:EUR
n3:zahajeniAkce
2013-12-09+01:00
s:numberOfPages
5
n18:hasPublisher
MAGNANIMITAS
n20:isbn
978-80-87952-00-9
n21:organizacniJednotka
27360