This HTML5 document contains 42 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
n17http://localhost/temp/predkladatel/
n8http://linked.opendata.cz/resource/domain/vavai/projekt/
n4http://linked.opendata.cz/resource/domain/vavai/riv/tvurce/
n18http://linked.opendata.cz/ontology/domain/vavai/
shttp://schema.org/
skoshttp://www.w3.org/2004/02/skos/core#
n3http://linked.opendata.cz/ontology/domain/vavai/riv/
n11http://linked.opendata.cz/resource/domain/vavai/vysledek/RIV%2F61988987%3A17610%2F14%3AA15014YS%21RIV15-MSM-17610___/
n2http://linked.opendata.cz/resource/domain/vavai/vysledek/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n6http://linked.opendata.cz/ontology/domain/vavai/riv/klicoveSlovo/
n14http://linked.opendata.cz/ontology/domain/vavai/riv/duvernostUdaju/
xsdhhttp://www.w3.org/2001/XMLSchema#
n16http://linked.opendata.cz/ontology/domain/vavai/riv/jazykVysledku/
n10http://linked.opendata.cz/ontology/domain/vavai/riv/aktivita/
n12http://linked.opendata.cz/ontology/domain/vavai/riv/druhVysledku/
n7http://linked.opendata.cz/ontology/domain/vavai/riv/obor/
n13http://reference.data.gov.uk/id/gregorian-year/

Statements

Subject Item
n2:RIV%2F61988987%3A17610%2F14%3AA15014YS%21RIV15-MSM-17610___
rdf:type
skos:Concept n18:Vysledek
dcterms:description
For a sequence of real numbers $\an$ we call $$E_{\Pi} \an = \biggl\{ \prod _{n=1}^\infty\ \left (1+ {\frac{1}{a_n c_n}}\right ) : c_n \in \mathbb Z^+ \biggr\}\,$$ its $\Pi$-expressible set. In this paper we calculate $E_{\Pi}\an$ under various hypothesis on $\{ a_n\}_{n=1}^{\infty}$. Where this is not possible we give some partial information on its contents. This investigation is a sequel to related investigations on the $\Sigma$-expressible sets of sums. For a sequence of real numbers $\an$ we call $$E_{\Pi} \an = \biggl\{ \prod _{n=1}^\infty\ \left (1+ {\frac{1}{a_n c_n}}\right ) : c_n \in \mathbb Z^+ \biggr\}\,$$ its $\Pi$-expressible set. In this paper we calculate $E_{\Pi}\an$ under various hypothesis on $\{ a_n\}_{n=1}^{\infty}$. Where this is not possible we give some partial information on its contents. This investigation is a sequel to related investigations on the $\Sigma$-expressible sets of sums.
dcterms:title
On expressible sets for products. On expressible sets for products.
skos:prefLabel
On expressible sets for products. On expressible sets for products.
skos:notation
RIV/61988987:17610/14:A15014YS!RIV15-MSM-17610___
n3:aktivita
n10:S n10:P
n3:aktivity
P(ED1.1.00/02.0070), P(GAP201/12/2351), S
n3:cisloPeriodika
2
n3:dodaniDat
n13:2015
n3:domaciTvurceVysledku
n4:9800905 Nair, Radhakrishnan n4:4373332
n3:druhVysledku
n12:J
n3:duvernostUdaju
n14:S
n3:entitaPredkladatele
n11:predkladatel
n3:idSjednocenehoVysledku
34280
n3:idVysledku
RIV/61988987:17610/14:A15014YS
n3:jazykVysledku
n16:eng
n3:klicovaSlova
sequences; expressible set
n3:klicoveSlovo
n6:expressible%20set n6:sequences
n3:kodStatuVydavatele
HU - Maďarsko
n3:kontrolniKodProRIV
[8E37A9E7DBF2]
n3:nazevZdroje
Periodica Mathematica Hungarica
n3:obor
n7:BA
n3:pocetDomacichTvurcuVysledku
3
n3:pocetTvurcuVysledku
3
n3:projekt
n8:GAP201%2F12%2F2351 n8:ED1.1.00%2F02.0070
n3:rokUplatneniVysledku
n13:2014
n3:svazekPeriodika
69
n3:tvurceVysledku
Nair, Radhakrishnan Hančl, Jaroslav Novotný, Lukáš
s:issn
0031-5303
s:numberOfPages
7
n17:organizacniJednotka
17610