This HTML5 document contains 55 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
n6http://linked.opendata.cz/resource/domain/vavai/riv/tvurce/
n5http://linked.opendata.cz/resource/domain/vavai/projekt/
n10http://linked.opendata.cz/resource/domain/vavai/subjekt/
n9http://linked.opendata.cz/ontology/domain/vavai/
shttp://schema.org/
skoshttp://www.w3.org/2004/02/skos/core#
n3http://linked.opendata.cz/ontology/domain/vavai/riv/
n19http://bibframe.org/vocab/
n2http://linked.opendata.cz/resource/domain/vavai/vysledek/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n11http://linked.opendata.cz/ontology/domain/vavai/riv/klicoveSlovo/
n14http://linked.opendata.cz/ontology/domain/vavai/riv/duvernostUdaju/
xsdhhttp://www.w3.org/2001/XMLSchema#
n18http://linked.opendata.cz/ontology/domain/vavai/riv/jazykVysledku/
n4http://linked.opendata.cz/ontology/domain/vavai/riv/aktivita/
n16http://linked.opendata.cz/ontology/domain/vavai/riv/obor/
n8http://linked.opendata.cz/ontology/domain/vavai/riv/druhVysledku/
n17http://linked.opendata.cz/resource/domain/vavai/vysledek/RIV%2F61389013%3A_____%2F13%3A00394941%21RIV14-GA0-61389013/
n15http://reference.data.gov.uk/id/gregorian-year/

Statements

Subject Item
n2:RIV%2F61389013%3A_____%2F13%3A00394941%21RIV14-GA0-61389013
rdf:type
skos:Concept n9:Vysledek
dcterms:description
We describe a new biopolymer-based nanofibrous material possibly suitable for tissue engineering prepared by an environment-friendly organic solvent-free method. Glycogen, a biodegradable hyperbranched D-glucose polymer, comes from renewable resources and is normally present in man. It forms nanofibres by simple freeze-drying from aqueous solutions with concentration less than 0.5%. However, the architecture of the freeze-dried material depends on the starting biopolymer concentration within the tested range 0.1–5 wt%; in particular higher concentrations produce porous sponge-like structures with communicating pores. Because of the solubility of glycogen in water, nanofibres were modified by solvent-free grafting biodegradable poly(ethyl cyanoacrylate) from vapor phase. Exposing glycogen nanofibres to vapors of ethyl cyanoacrylate only slightly changed the material architecture while producing a water-insoluble biodegradable material with glycogen-to-poly(ethyl cyanoacrylate) ratio depending on the polymerization time. The material was proven to be hydrolytically degradable over the course of several months. We describe a new biopolymer-based nanofibrous material possibly suitable for tissue engineering prepared by an environment-friendly organic solvent-free method. Glycogen, a biodegradable hyperbranched D-glucose polymer, comes from renewable resources and is normally present in man. It forms nanofibres by simple freeze-drying from aqueous solutions with concentration less than 0.5%. However, the architecture of the freeze-dried material depends on the starting biopolymer concentration within the tested range 0.1–5 wt%; in particular higher concentrations produce porous sponge-like structures with communicating pores. Because of the solubility of glycogen in water, nanofibres were modified by solvent-free grafting biodegradable poly(ethyl cyanoacrylate) from vapor phase. Exposing glycogen nanofibres to vapors of ethyl cyanoacrylate only slightly changed the material architecture while producing a water-insoluble biodegradable material with glycogen-to-poly(ethyl cyanoacrylate) ratio depending on the polymerization time. The material was proven to be hydrolytically degradable over the course of several months.
dcterms:title
Biopolymer-based degradable nanofibres from renewable resources produced by freeze-drying Biopolymer-based degradable nanofibres from renewable resources produced by freeze-drying
skos:prefLabel
Biopolymer-based degradable nanofibres from renewable resources produced by freeze-drying Biopolymer-based degradable nanofibres from renewable resources produced by freeze-drying
skos:notation
RIV/61389013:_____/13:00394941!RIV14-GA0-61389013
n9:predkladatel
n10:ico%3A61389013
n3:aktivita
n4:P n4:I
n3:aktivity
I, P(GA202/09/2078), P(GAP108/10/1560)
n3:cisloPeriodika
35
n3:dodaniDat
n15:2014
n3:domaciTvurceVysledku
n6:1474545 Rabyk, Mariia n6:8685509 n6:5928303 n6:6354068 n6:2540568 n6:4252454 Vetrík, Miroslav
n3:druhVysledku
n8:J
n3:duvernostUdaju
n14:S
n3:entitaPredkladatele
n17:predkladatel
n3:idSjednocenehoVysledku
63537
n3:idVysledku
RIV/61389013:_____/13:00394941
n3:jazykVysledku
n18:eng
n3:klicovaSlova
glycogen; nanofibres; poly(ethyl cyanoacrylate)
n3:klicoveSlovo
n11:glycogen n11:nanofibres n11:poly%28ethyl%20cyanoacrylate%29
n3:kodStatuVydavatele
GB - Spojené království Velké Británie a Severního Irska
n3:kontrolniKodProRIV
[AB449F38F829]
n3:nazevZdroje
RSC Advances
n3:obor
n16:BO
n3:pocetDomacichTvurcuVysledku
8
n3:pocetTvurcuVysledku
8
n3:projekt
n5:GA202%2F09%2F2078 n5:GAP108%2F10%2F1560
n3:rokUplatneniVysledku
n15:2013
n3:svazekPeriodika
3
n3:tvurceVysledku
Šlouf, Miroslav Přádný, Martin Štěpánek, Petr Pospíšilová, Aneta Hrubý, Martin Vetrík, Miroslav Kobera, Libor Rabyk, Mariia
n3:wos
000323132100052
s:issn
2046-2069
s:numberOfPages
8
n19:doi
10.1039/c3ra42647e