This HTML5 document contains 42 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
n6http://linked.opendata.cz/resource/domain/vavai/vysledek/RIV%2F61388998%3A_____%2F13%3A00394350%21RIV14-GA0-61388998/
n16http://linked.opendata.cz/resource/domain/vavai/projekt/
n15http://linked.opendata.cz/resource/domain/vavai/riv/tvurce/
n10http://linked.opendata.cz/resource/domain/vavai/subjekt/
n9http://linked.opendata.cz/ontology/domain/vavai/
shttp://schema.org/
skoshttp://www.w3.org/2004/02/skos/core#
n3http://linked.opendata.cz/ontology/domain/vavai/riv/
n18http://bibframe.org/vocab/
n2http://linked.opendata.cz/resource/domain/vavai/vysledek/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n4http://linked.opendata.cz/ontology/domain/vavai/riv/klicoveSlovo/
n17http://linked.opendata.cz/ontology/domain/vavai/riv/duvernostUdaju/
xsdhhttp://www.w3.org/2001/XMLSchema#
n8http://linked.opendata.cz/ontology/domain/vavai/riv/jazykVysledku/
n5http://linked.opendata.cz/ontology/domain/vavai/riv/aktivita/
n19http://linked.opendata.cz/ontology/domain/vavai/riv/druhVysledku/
n12http://linked.opendata.cz/ontology/domain/vavai/riv/obor/
n14http://reference.data.gov.uk/id/gregorian-year/

Statements

Subject Item
n2:RIV%2F61388998%3A_____%2F13%3A00394350%21RIV14-GA0-61388998
rdf:type
skos:Concept n9:Vysledek
dcterms:description
In speech, air is driven through the larynx by compression of the lungs. Thereby, air flows through the glottis which forces the vocal folds to oscillate which in turn results in a pulsating air flow. This air flow is the main source of the generated sound-the phonation. The acoustic wave then passes through the vocal tract, which acts as a filter modulating the propagated sound leaving the mouth. We model the fluid-structureacoustic interaction with a so called hybrid approach. The air flow in the larynx, together with a prescribed vocal fold motion, is simulated with help of the open source solver OpenFOAM. Based on the resulting fluid field, acoustic source terms and the wave propagation is calculated within the finite element solver CFS++. Two methods are available to choose from, Lighthill's acoustic analogy and an aeroacoustic analogy based on a perturbation ansatz. Additionally, the simulation domain is extended by a realistic but geometrical fixed vocal tract and connected to a propagation region. The different acoustic approaches are compared, by analysing the acoustic pressure in the glottis (source region) and outside the vocal tract. Moreover, to illustrate the effects of the vocal tract an alternative geometry is used for comparison. In speech, air is driven through the larynx by compression of the lungs. Thereby, air flows through the glottis which forces the vocal folds to oscillate which in turn results in a pulsating air flow. This air flow is the main source of the generated sound-the phonation. The acoustic wave then passes through the vocal tract, which acts as a filter modulating the propagated sound leaving the mouth. We model the fluid-structureacoustic interaction with a so called hybrid approach. The air flow in the larynx, together with a prescribed vocal fold motion, is simulated with help of the open source solver OpenFOAM. Based on the resulting fluid field, acoustic source terms and the wave propagation is calculated within the finite element solver CFS++. Two methods are available to choose from, Lighthill's acoustic analogy and an aeroacoustic analogy based on a perturbation ansatz. Additionally, the simulation domain is extended by a realistic but geometrical fixed vocal tract and connected to a propagation region. The different acoustic approaches are compared, by analysing the acoustic pressure in the glottis (source region) and outside the vocal tract. Moreover, to illustrate the effects of the vocal tract an alternative geometry is used for comparison.
dcterms:title
Acoustic perturbation equations and Lighthill's acoustic analogy for the human phonation Acoustic perturbation equations and Lighthill's acoustic analogy for the human phonation
skos:prefLabel
Acoustic perturbation equations and Lighthill's acoustic analogy for the human phonation Acoustic perturbation equations and Lighthill's acoustic analogy for the human phonation
skos:notation
RIV/61388998:_____/13:00394350!RIV14-GA0-61388998
n9:predkladatel
n10:ico%3A61388998
n3:aktivita
n5:P n5:I
n3:aktivity
I, P(GAP101/11/0207)
n3:cisloPeriodika
060309
n3:dodaniDat
n14:2014
n3:domaciTvurceVysledku
n15:1490176
n3:druhVysledku
n19:J
n3:duvernostUdaju
n17:S
n3:entitaPredkladatele
n6:predkladatel
n3:idSjednocenehoVysledku
59358
n3:idVysledku
RIV/61388998:_____/13:00394350
n3:jazykVysledku
n8:eng
n3:klicovaSlova
vocal folds; CFD; computational aeroacoustics
n3:klicoveSlovo
n4:vocal%20folds n4:CFD n4:computational%20aeroacoustics
n3:kodStatuVydavatele
CA - Kanada
n3:kontrolniKodProRIV
[D0BF69B465F3]
n3:nazevZdroje
Proceedings of Meetings on Acoustics -ICA 2013
n3:obor
n12:BI
n3:pocetDomacichTvurcuVysledku
1
n3:pocetTvurcuVysledku
4
n3:projekt
n16:GAP101%2F11%2F0207
n3:rokUplatneniVysledku
n14:2013
n3:svazekPeriodika
19
n3:tvurceVysledku
Šidlof, Petr Zoerner, S. Huppe, A. Kaltenbacher, M.
s:issn
1939-800X
s:numberOfPages
8
n18:doi
10.1121/1.4799392