This HTML5 document contains 47 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
n10http://linked.opendata.cz/ontology/domain/vavai/riv/typAkce/
dctermshttp://purl.org/dc/terms/
n19http://purl.org/net/nknouf/ns/bibtex#
n3http://localhost/temp/predkladatel/
n21http://linked.opendata.cz/resource/domain/vavai/projekt/
n16http://linked.opendata.cz/resource/domain/vavai/riv/tvurce/
n13http://linked.opendata.cz/resource/domain/vavai/subjekt/
n12http://linked.opendata.cz/ontology/domain/vavai/
n14https://schema.org/
shttp://schema.org/
skoshttp://www.w3.org/2004/02/skos/core#
n5http://linked.opendata.cz/ontology/domain/vavai/riv/
n22http://linked.opendata.cz/resource/domain/vavai/vysledek/RIV%2F60461373%3A22310%2F12%3A43894452%21RIV13-GA0-22310___/
n2http://linked.opendata.cz/resource/domain/vavai/vysledek/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n8http://linked.opendata.cz/ontology/domain/vavai/riv/klicoveSlovo/
n18http://linked.opendata.cz/ontology/domain/vavai/riv/duvernostUdaju/
xsdhhttp://www.w3.org/2001/XMLSchema#
n20http://linked.opendata.cz/ontology/domain/vavai/riv/aktivita/
n7http://linked.opendata.cz/ontology/domain/vavai/riv/jazykVysledku/
n17http://linked.opendata.cz/ontology/domain/vavai/riv/obor/
n6http://linked.opendata.cz/ontology/domain/vavai/riv/druhVysledku/
n9http://reference.data.gov.uk/id/gregorian-year/

Statements

Subject Item
n2:RIV%2F60461373%3A22310%2F12%3A43894452%21RIV13-GA0-22310___
rdf:type
skos:Concept n12:Vysledek
dcterms:description
Graphene can be prepared by annealing of SiC wafer. That allows large scale patterning by standard UV photolithography. Unfortunately SiC substrate does not allow backgating in contrast to graphene on silicon substrate (with thin silicon dioxide layer). The major challenge is to find suitable dielectric layer that can be used for electrostatic gating without significant influence on carrier mobility or another properties of graphene. We examined electrical behavior of electron exposed hydrogen silsesquioxane (HSQ) layer used as dielectric layer of topgated SiC graphene. We prepared seven sets of capacitor structures for test of HSQ layer electrical properties. The capacitors have different dimensions (100x5 - 100x100 mým) and each set had different exposure energy (12 - 480mýC/cm2) and annealing process. Electrodes and contacts were prepared by evaporation of 3/30 nm thick Cr/Au layer. The influence of exposure energy to electrical properties of HSQ layer was observed. The dimension of capacitor structures had lower effect than exposure energy. The gated Hall-bar structure of SiC graphene will be prepared subsequently. Hall-bar will be defined by e-beam lithography, etched by oxygen plasma and contacted by evaporation. HSQ will be used as a gate dielectric. Graphene can be prepared by annealing of SiC wafer. That allows large scale patterning by standard UV photolithography. Unfortunately SiC substrate does not allow backgating in contrast to graphene on silicon substrate (with thin silicon dioxide layer). The major challenge is to find suitable dielectric layer that can be used for electrostatic gating without significant influence on carrier mobility or another properties of graphene. We examined electrical behavior of electron exposed hydrogen silsesquioxane (HSQ) layer used as dielectric layer of topgated SiC graphene. We prepared seven sets of capacitor structures for test of HSQ layer electrical properties. The capacitors have different dimensions (100x5 - 100x100 mým) and each set had different exposure energy (12 - 480mýC/cm2) and annealing process. Electrodes and contacts were prepared by evaporation of 3/30 nm thick Cr/Au layer. The influence of exposure energy to electrical properties of HSQ layer was observed. The dimension of capacitor structures had lower effect than exposure energy. The gated Hall-bar structure of SiC graphene will be prepared subsequently. Hall-bar will be defined by e-beam lithography, etched by oxygen plasma and contacted by evaporation. HSQ will be used as a gate dielectric.
dcterms:title
Hydrogen silsesquioxane as a gate dielectric layer for SiC graphene FET Hydrogen silsesquioxane as a gate dielectric layer for SiC graphene FET
skos:prefLabel
Hydrogen silsesquioxane as a gate dielectric layer for SiC graphene FET Hydrogen silsesquioxane as a gate dielectric layer for SiC graphene FET
skos:notation
RIV/60461373:22310/12:43894452!RIV13-GA0-22310___
n12:predkladatel
n13:orjk%3A22310
n5:aktivita
n20:S n20:P
n5:aktivity
P(GAP108/11/0894), S
n5:dodaniDat
n9:2013
n5:domaciTvurceVysledku
n16:2315750
n5:druhVysledku
n6:D
n5:duvernostUdaju
n18:S
n5:entitaPredkladatele
n22:predkladatel
n5:idSjednocenehoVysledku
140035
n5:idVysledku
RIV/60461373:22310/12:43894452
n5:jazykVysledku
n7:eng
n5:klicovaSlova
FET; Gate dielectric; Hydrogen silsesquioxane; Graphene
n5:klicoveSlovo
n8:FET n8:Gate%20dielectric n8:Hydrogen%20silsesquioxane n8:Graphene
n5:kontrolniKodProRIV
[3B4702868B7F]
n5:mistoKonaniAkce
Smolenice
n5:mistoVydani
Bratislava
n5:nazevZdroje
Proceedings ASDAM 2012
n5:obor
n17:JJ
n5:pocetDomacichTvurcuVysledku
1
n5:pocetTvurcuVysledku
6
n5:projekt
n21:GAP108%2F11%2F0894
n5:rokUplatneniVysledku
n9:2012
n5:tvurceVysledku
Náhlík, Josef Voves, J. Šobáň, Z. Janoušek, M. Macháč, Petr Jurka, V.
n5:typAkce
n10:EUR
n5:zahajeniAkce
2012-11-11+01:00
s:numberOfPages
4
n19:hasPublisher
Slovenská technická univerzita v Bratislave
n14:isbn
978-1-4673-1195-3
n3:organizacniJednotka
22310