This HTML5 document contains 46 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
n14http://localhost/temp/predkladatel/
n19http://linked.opendata.cz/resource/domain/vavai/projekt/
n15http://linked.opendata.cz/resource/domain/vavai/riv/tvurce/
n8http://linked.opendata.cz/ontology/domain/vavai/
n12http://linked.opendata.cz/resource/domain/vavai/zamer/
shttp://schema.org/
n4http://linked.opendata.cz/ontology/domain/vavai/riv/
skoshttp://www.w3.org/2004/02/skos/core#
n17http://linked.opendata.cz/resource/domain/vavai/vysledek/RIV%2F60460709%3A41310%2F05%3A11061%21RIV06-GA0-41310___/
n2http://linked.opendata.cz/resource/domain/vavai/vysledek/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n9http://linked.opendata.cz/ontology/domain/vavai/riv/klicoveSlovo/
n16http://linked.opendata.cz/ontology/domain/vavai/riv/duvernostUdaju/
xsdhhttp://www.w3.org/2001/XMLSchema#
n10http://linked.opendata.cz/ontology/domain/vavai/riv/jazykVysledku/
n6http://linked.opendata.cz/ontology/domain/vavai/riv/aktivita/
n18http://linked.opendata.cz/ontology/domain/vavai/riv/druhVysledku/
n7http://linked.opendata.cz/ontology/domain/vavai/riv/obor/
n13http://reference.data.gov.uk/id/gregorian-year/

Statements

Subject Item
n2:RIV%2F60460709%3A41310%2F05%3A11061%21RIV06-GA0-41310___
rdf:type
skos:Concept n8:Vysledek
dcterms:description
The problem of the existence of non.medial distributive hamiltonian quasigroups is solved. Translating this problem first to commutative Moufang loops with operatirs, then to ternary algebras and, finally, to cocyclic modules, it is shown that every non-medial distributive hamiltonian quasigroup has at least 729 elements and that there are just two isomophism classes of such quasigroups of the least cardinality. The quasigroups representing these two classes are antiisomorphic. The problem of the existence of non.medial distributive hamiltonian quasigroups is solved. Translating this problem first to commutative Moufang loops with operatirs, then to ternary algebras and, finally, to cocyclic modules, it is shown that every non-medial distributive hamiltonian quasigroup has at least 729 elements and that there are just two isomophism classes of such quasigroups of the least cardinality. The quasigroups representing these two classes are antiisomorphic. The problem of the existence of non.medial distributive hamiltonian quasigroups is solved. Translating this problem first to commutative Moufang loops with operatirs, then to ternary algebras and, finally, to cocyclic modules, it is shown that every non-medial distributive hamiltonian quasigroup has at least 729 elements and that there are just two isomophism classes of such quasigroups of the least cardinality. The quasigroups representing these two classes are antiisomorphic.
dcterms:title
Hamiltonian selfdistributive quasigroups Hamiltonovské samodistributivní quasigrupy Hamiltonian selfdistributive quasigroups
skos:prefLabel
Hamiltonovské samodistributivní quasigrupy Hamiltonian selfdistributive quasigroups Hamiltonian selfdistributive quasigroups
skos:notation
RIV/60460709:41310/05:11061!RIV06-GA0-41310___
n4:strany
70;104
n4:aktivita
n6:P n6:Z
n4:aktivity
P(GA201/02/0594), Z(MSM0021620839)
n4:cisloPeriodika
0
n4:dodaniDat
n13:2006
n4:domaciTvurceVysledku
n15:8476462
n4:druhVysledku
n18:J
n4:duvernostUdaju
n16:S
n4:entitaPredkladatele
n17:predkladatel
n4:idSjednocenehoVysledku
523029
n4:idVysledku
RIV/60460709:41310/05:11061
n4:jazykVysledku
n10:eng
n4:klicovaSlova
quasigroup, distributive, medial, Hamiltonian
n4:klicoveSlovo
n9:Hamiltonian n9:distributive n9:medial n9:quasigroup
n4:kodStatuVydavatele
GB - Spojené království Velké Británie a Severního Irska
n4:kontrolniKodProRIV
[72F83950EE72]
n4:nazevZdroje
Journal of Algebra
n4:obor
n7:BA
n4:pocetDomacichTvurcuVysledku
1
n4:pocetTvurcuVysledku
3
n4:projekt
n19:GA201%2F02%2F0594
n4:rokUplatneniVysledku
n13:2005
n4:svazekPeriodika
289
n4:tvurceVysledku
Herbera, Dolors Němec, Petr Kepka, Tomáš
n4:zamer
n12:MSM0021620839
s:issn
0021-8693
s:numberOfPages
35
n14:organizacniJednotka
41310