This HTML5 document contains 42 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
n10http://linked.opendata.cz/ontology/domain/vavai/riv/typAkce/
dctermshttp://purl.org/dc/terms/
n11http://localhost/temp/predkladatel/
n7http://purl.org/net/nknouf/ns/bibtex#
n8http://linked.opendata.cz/resource/domain/vavai/riv/tvurce/
n6http://linked.opendata.cz/ontology/domain/vavai/
n21https://schema.org/
shttp://schema.org/
skoshttp://www.w3.org/2004/02/skos/core#
rdfshttp://www.w3.org/2000/01/rdf-schema#
n3http://linked.opendata.cz/ontology/domain/vavai/riv/
n18http://linked.opendata.cz/resource/domain/vavai/vysledek/RIV%2F60162694%3AG43__%2F14%3A00523130%21RIV15-MO0-G43_____/
n2http://linked.opendata.cz/resource/domain/vavai/vysledek/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n17http://linked.opendata.cz/ontology/domain/vavai/riv/klicoveSlovo/
n15http://linked.opendata.cz/ontology/domain/vavai/riv/duvernostUdaju/
xsdhhttp://www.w3.org/2001/XMLSchema#
n20http://linked.opendata.cz/ontology/domain/vavai/riv/jazykVysledku/
n12http://linked.opendata.cz/ontology/domain/vavai/riv/aktivita/
n13http://linked.opendata.cz/ontology/domain/vavai/riv/obor/
n5http://linked.opendata.cz/ontology/domain/vavai/riv/druhVysledku/
n4http://reference.data.gov.uk/id/gregorian-year/

Statements

Subject Item
n2:RIV%2F60162694%3AG43__%2F14%3A00523130%21RIV15-MO0-G43_____
rdf:type
n6:Vysledek skos:Concept
rdfs:seeAlso
http://vavtest.unob.cz/registr
dcterms:description
The techniques for image format conversion from grayscale to binary could be grouped into two categories: global group and local group. In this paper, we focus on the binarization of a grayscale image using both thresholding techniques. Local binarization methods try to compute thresholds individually for each pixel, using information from the local neighborhood of the pixel. These methods are often slow since the computation of image features from the local neighborhood is to be done for each image pixel. This paper focuses on employing a fast approach to compute local thresholds using the technique of integral sum image. Using this approach we are able to achieve binarization speed close to the global binarization methods. What more, the Otsu method was used representing the other techniques in the global category. Global techniques are very fast and they give good results for typical images. The techniques for image format conversion from grayscale to binary could be grouped into two categories: global group and local group. In this paper, we focus on the binarization of a grayscale image using both thresholding techniques. Local binarization methods try to compute thresholds individually for each pixel, using information from the local neighborhood of the pixel. These methods are often slow since the computation of image features from the local neighborhood is to be done for each image pixel. This paper focuses on employing a fast approach to compute local thresholds using the technique of integral sum image. Using this approach we are able to achieve binarization speed close to the global binarization methods. What more, the Otsu method was used representing the other techniques in the global category. Global techniques are very fast and they give good results for typical images.
dcterms:title
Using Threshold Techniques for Object Detection in Infrared Images Using Threshold Techniques for Object Detection in Infrared Images
skos:prefLabel
Using Threshold Techniques for Object Detection in Infrared Images Using Threshold Techniques for Object Detection in Infrared Images
skos:notation
RIV/60162694:G43__/14:00523130!RIV15-MO0-G43_____
n3:aktivita
n12:S n12:I
n3:aktivity
I, S
n3:dodaniDat
n4:2015
n3:domaciTvurceVysledku
n8:6260276 n8:1870726
n3:druhVysledku
n5:D
n3:duvernostUdaju
n15:S
n3:entitaPredkladatele
n18:predkladatel
n3:idSjednocenehoVysledku
52500
n3:idVysledku
RIV/60162694:G43__/14:00523130
n3:jazykVysledku
n20:eng
n3:klicovaSlova
Threshold techniques; Matlab; Object detection
n3:klicoveSlovo
n17:Matlab n17:Threshold%20techniques n17:Object%20detection
n3:kontrolniKodProRIV
[2FA259D0D8C3]
n3:mistoKonaniAkce
Brno
n3:mistoVydani
Brno
n3:nazevZdroje
Proceedings of the 16th International Conference on Mechatronics – Mechatronika 2014
n3:obor
n13:KA
n3:pocetDomacichTvurcuVysledku
2
n3:pocetTvurcuVysledku
2
n3:rokUplatneniVysledku
n4:2014
n3:tvurceVysledku
Polášek, Martin Pham, Quy Ich
n3:typAkce
n10:WRD
n3:zahajeniAkce
2014-01-01+01:00
s:numberOfPages
8
n7:hasPublisher
Vysoké učení technické v Brně
n21:isbn
978-80-214-4817-9
n11:organizacniJednotka
G43