This HTML5 document contains 44 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
n17http://linked.opendata.cz/ontology/domain/vavai/riv/typAkce/
dctermshttp://purl.org/dc/terms/
n19http://purl.org/net/nknouf/ns/bibtex#
n6http://localhost/temp/predkladatel/
n8http://linked.opendata.cz/resource/domain/vavai/riv/tvurce/
n14http://linked.opendata.cz/ontology/domain/vavai/
n13http://linked.opendata.cz/resource/domain/vavai/vysledek/RIV%2F60162694%3AG43__%2F13%3A00503062%21RIV14-MO0-G43_____/
shttp://schema.org/
rdfshttp://www.w3.org/2000/01/rdf-schema#
skoshttp://www.w3.org/2004/02/skos/core#
n3http://linked.opendata.cz/ontology/domain/vavai/riv/
n2http://linked.opendata.cz/resource/domain/vavai/vysledek/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n4http://linked.opendata.cz/ontology/domain/vavai/riv/klicoveSlovo/
n7http://linked.opendata.cz/ontology/domain/vavai/riv/duvernostUdaju/
xsdhhttp://www.w3.org/2001/XMLSchema#
n20http://linked.opendata.cz/ontology/domain/vavai/riv/aktivita/
n15http://linked.opendata.cz/ontology/domain/vavai/riv/jazykVysledku/
n18http://linked.opendata.cz/ontology/domain/vavai/riv/druhVysledku/
n16http://linked.opendata.cz/ontology/domain/vavai/riv/obor/
n9http://reference.data.gov.uk/id/gregorian-year/

Statements

Subject Item
n2:RIV%2F60162694%3AG43__%2F13%3A00503062%21RIV14-MO0-G43_____
rdf:type
n14:Vysledek skos:Concept
rdfs:seeAlso
http://vavtest.unob.cz/registr
dcterms:description
The paper deals with application of selected suitable analytical methods use to analyse field data from medium off-road military vehicles. Some pieces of information from oil are interpreted thank to diagnostics in form of polluting particles. Such particles represent processes in the engine like wear (e.g. Fe, Cu, Pb, etc.) and oil condition (like e.g. Mn, Si, Zn, etc.). These particles can give us information both about system state and about oil state. Thank to good recording system we have data from field operation available. Therefore we decided to use selected analytical – algebraic methods for determining the specific particles generating trend. Based on the outcomes we hope to be able to determine the system condition (e.g. residual operation life, maintenance modifications in the intervals, etc.). Selected methods like regression analysis, base functions and fuzzy inference system will be used for the data assessment. The results itself might be beneficial in other forthcoming analysis like quality, risk and dependability management processes, e.g. for optimization during an operation and maintenance phase, logistics and spare parts planning, life cycle costing, mission planning. The paper deals with application of selected suitable analytical methods use to analyse field data from medium off-road military vehicles. Some pieces of information from oil are interpreted thank to diagnostics in form of polluting particles. Such particles represent processes in the engine like wear (e.g. Fe, Cu, Pb, etc.) and oil condition (like e.g. Mn, Si, Zn, etc.). These particles can give us information both about system state and about oil state. Thank to good recording system we have data from field operation available. Therefore we decided to use selected analytical – algebraic methods for determining the specific particles generating trend. Based on the outcomes we hope to be able to determine the system condition (e.g. residual operation life, maintenance modifications in the intervals, etc.). Selected methods like regression analysis, base functions and fuzzy inference system will be used for the data assessment. The results itself might be beneficial in other forthcoming analysis like quality, risk and dependability management processes, e.g. for optimization during an operation and maintenance phase, logistics and spare parts planning, life cycle costing, mission planning.
dcterms:title
Possibilities of Mathematical Modelling of Tribo-Diagnostics Data Possibilities of Mathematical Modelling of Tribo-Diagnostics Data
skos:prefLabel
Possibilities of Mathematical Modelling of Tribo-Diagnostics Data Possibilities of Mathematical Modelling of Tribo-Diagnostics Data
skos:notation
RIV/60162694:G43__/13:00503062!RIV14-MO0-G43_____
n3:aktivita
n20:I
n3:aktivity
I
n3:dodaniDat
n9:2014
n3:domaciTvurceVysledku
n8:5552575 n8:9774025
n3:druhVysledku
n18:D
n3:duvernostUdaju
n7:S
n3:entitaPredkladatele
n13:predkladatel
n3:idSjednocenehoVysledku
97575
n3:idVysledku
RIV/60162694:G43__/13:00503062
n3:jazykVysledku
n15:eng
n3:klicovaSlova
maintenance optimization; tribo-diagnostics; regression analysis; fuzzy logic; wears.
n3:klicoveSlovo
n4:fuzzy%20logic n4:regression%20analysis n4:wears. n4:tribo-diagnostics n4:maintenance%20optimization
n3:kontrolniKodProRIV
[1684F9669EB2]
n3:mistoKonaniAkce
Kaunas
n3:mistoVydani
Kaunas, Litevská republika
n3:nazevZdroje
Transport Means
n3:obor
n16:KA
n3:pocetDomacichTvurcuVysledku
2
n3:pocetTvurcuVysledku
3
n3:rokUplatneniVysledku
n9:2013
n3:tvurceVysledku
Žák, Libor Glos, Josef Vališ, David
n3:typAkce
n17:WRD
n3:zahajeniAkce
2013-01-01+01:00
s:issn
1822-296X
s:numberOfPages
4
n19:hasPublisher
Kaunas Univerzity of Technology
n6:organizacniJednotka
G43