This HTML5 document contains 41 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
n17http://localhost/temp/predkladatel/
n9http://linked.opendata.cz/resource/domain/vavai/vysledek/RIV%2F60162694%3AG43__%2F12%3A00477072%21RIV13-GA0-G43_____/
n12http://linked.opendata.cz/resource/domain/vavai/projekt/
n5http://linked.opendata.cz/resource/domain/vavai/riv/tvurce/
n8http://linked.opendata.cz/ontology/domain/vavai/
shttp://schema.org/
n4http://linked.opendata.cz/ontology/domain/vavai/riv/
rdfshttp://www.w3.org/2000/01/rdf-schema#
skoshttp://www.w3.org/2004/02/skos/core#
n2http://linked.opendata.cz/resource/domain/vavai/vysledek/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n6http://linked.opendata.cz/ontology/domain/vavai/riv/klicoveSlovo/
n19http://linked.opendata.cz/ontology/domain/vavai/riv/duvernostUdaju/
xsdhhttp://www.w3.org/2001/XMLSchema#
n16http://linked.opendata.cz/ontology/domain/vavai/riv/aktivita/
n11http://linked.opendata.cz/ontology/domain/vavai/riv/jazykVysledku/
n18http://linked.opendata.cz/ontology/domain/vavai/riv/druhVysledku/
n13http://linked.opendata.cz/ontology/domain/vavai/riv/obor/
n15http://reference.data.gov.uk/id/gregorian-year/

Statements

Subject Item
n2:RIV%2F60162694%3AG43__%2F12%3A00477072%21RIV13-GA0-G43_____
rdf:type
skos:Concept n8:Vysledek
rdfs:seeAlso
http://vavtest.unob.cz/registr
dcterms:description
Hypergroups are generalizations of groups. If this binary operation is taken to be multivalued, then we arrive at a hypergroup. The motivation for generalization of the notion of group resulted naturally from various problems in non-commutative algebra, another motivation for such an investigation came from geometry. In various branches of mathematics we encounter important examples of topologico\discretionary{-}{-}{-}algebraical structures like topological groupoids, groups, rings, fields etc. In this contribution various kinds of continuity of hyperoperations will be introduced, namely pseudocontinuous, strongly pseudocontinuous and continuous hyperoperations. Further, the relationship between them is studied. Our aim is to generalize the concept of topological groupoid to topological hypergroupoid. Hypergroups are generalizations of groups. If this binary operation is taken to be multivalued, then we arrive at a hypergroup. The motivation for generalization of the notion of group resulted naturally from various problems in non-commutative algebra, another motivation for such an investigation came from geometry. In various branches of mathematics we encounter important examples of topologico\discretionary{-}{-}{-}algebraical structures like topological groupoids, groups, rings, fields etc. In this contribution various kinds of continuity of hyperoperations will be introduced, namely pseudocontinuous, strongly pseudocontinuous and continuous hyperoperations. Further, the relationship between them is studied. Our aim is to generalize the concept of topological groupoid to topological hypergroupoid.
dcterms:title
Topological hypergroupoids Topological hypergroupoids
skos:prefLabel
Topological hypergroupoids Topological hypergroupoids
skos:notation
RIV/60162694:G43__/12:00477072!RIV13-GA0-G43_____
n4:aktivita
n16:P
n4:aktivity
P(GA205/09/1198)
n4:cisloPeriodika
9
n4:dodaniDat
n15:2013
n4:domaciTvurceVysledku
n5:6846017
n4:druhVysledku
n18:J
n4:duvernostUdaju
n19:S
n4:entitaPredkladatele
n9:predkladatel
n4:idSjednocenehoVysledku
174625
n4:idVysledku
RIV/60162694:G43__/12:00477072
n4:jazykVysledku
n11:eng
n4:klicovaSlova
Hyperoperation; hypergroupoid; continuous; pseudocontinuous and strongly pseudocontinuous hyperoperation; topology; topological hypergroupoid
n4:klicoveSlovo
n6:hypergroupoid n6:Hyperoperation n6:topological%20hypergroupoid n6:pseudocontinuous%20and%20strongly%20pseudocontinuous%20hyperoperation n6:topology n6:continuous
n4:kodStatuVydavatele
GB - Spojené království Velké Británie a Severního Irska
n4:kontrolniKodProRIV
[1C40409E0F79]
n4:nazevZdroje
Computers and Mathematics with Applications
n4:obor
n13:BA
n4:pocetDomacichTvurcuVysledku
1
n4:pocetTvurcuVysledku
1
n4:projekt
n12:GA205%2F09%2F1198
n4:rokUplatneniVysledku
n15:2012
n4:svazekPeriodika
64
n4:tvurceVysledku
Hošková-Mayerová, Šárka
s:issn
0898-1221
s:numberOfPages
5
n17:organizacniJednotka
G43