This HTML5 document contains 43 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
n13http://localhost/temp/predkladatel/
n19http://linked.opendata.cz/resource/domain/vavai/riv/tvurce/
n10http://linked.opendata.cz/resource/domain/vavai/subjekt/
n9http://linked.opendata.cz/ontology/domain/vavai/
shttp://schema.org/
skoshttp://www.w3.org/2004/02/skos/core#
n3http://linked.opendata.cz/ontology/domain/vavai/riv/
n8http://bibframe.org/vocab/
n2http://linked.opendata.cz/resource/domain/vavai/vysledek/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n6http://linked.opendata.cz/ontology/domain/vavai/riv/klicoveSlovo/
n4http://linked.opendata.cz/resource/domain/vavai/vysledek/RIV%2F49777513%3A23520%2F12%3A43915988%21RIV13-MSM-23520___/
n5http://linked.opendata.cz/ontology/domain/vavai/riv/duvernostUdaju/
xsdhhttp://www.w3.org/2001/XMLSchema#
n16http://linked.opendata.cz/ontology/domain/vavai/riv/aktivita/
n11http://linked.opendata.cz/ontology/domain/vavai/riv/jazykVysledku/
n18http://linked.opendata.cz/ontology/domain/vavai/riv/druhVysledku/
n17http://linked.opendata.cz/ontology/domain/vavai/riv/obor/
n15http://reference.data.gov.uk/id/gregorian-year/

Statements

Subject Item
n2:RIV%2F49777513%3A23520%2F12%3A43915988%21RIV13-MSM-23520___
rdf:type
skos:Concept n9:Vysledek
dcterms:description
The problem of finding the largest connected subgraph of a given undirected host graph, subject to constraints on the maximum degree d and the diameter D, was introduced by Dekker et al. in 2012, as a generalization of the Degree-Diameter Problem. A case of special interest is when the host graph is a common parallel architecture. Here we discuss the case when the host graph is a k-dimensional mesh. We provide some general bounds for the order of the largest subgraph in arbitrary dimension k, and for the particular cases of k = 3, d = 4 and k = 2, d = 3, we give constructions that result in sharper lower bounds. The problem of finding the largest connected subgraph of a given undirected host graph, subject to constraints on the maximum degree d and the diameter D, was introduced by Dekker et al. in 2012, as a generalization of the Degree-Diameter Problem. A case of special interest is when the host graph is a common parallel architecture. Here we discuss the case when the host graph is a k-dimensional mesh. We provide some general bounds for the order of the largest subgraph in arbitrary dimension k, and for the particular cases of k = 3, d = 4 and k = 2, d = 3, we give constructions that result in sharper lower bounds.
dcterms:title
The maximum degree and diameter-bounded subgraph in the mesh The maximum degree and diameter-bounded subgraph in the mesh
skos:prefLabel
The maximum degree and diameter-bounded subgraph in the mesh The maximum degree and diameter-bounded subgraph in the mesh
skos:notation
RIV/49777513:23520/12:43915988!RIV13-MSM-23520___
n9:predkladatel
n10:orjk%3A23520
n3:aktivita
n16:I
n3:aktivity
I
n3:cisloPeriodika
12
n3:dodaniDat
n15:2013
n3:domaciTvurceVysledku
n19:5123917
n3:druhVysledku
n18:J
n3:duvernostUdaju
n5:S
n3:entitaPredkladatele
n4:predkladatel
n3:idSjednocenehoVysledku
148794
n3:idVysledku
RIV/49777513:23520/12:43915988
n3:jazykVysledku
n11:eng
n3:klicovaSlova
Delannoy numbers; mesh; parallel architectures; degree-diameter problem; network design
n3:klicoveSlovo
n6:parallel%20architectures n6:degree-diameter%20problem n6:Delannoy%20numbers n6:mesh n6:network%20design
n3:kodStatuVydavatele
NL - Nizozemsko
n3:kontrolniKodProRIV
[ABC5E09E944F]
n3:nazevZdroje
DISCRETE APPLIED MATHEMATICS
n3:obor
n17:BA
n3:pocetDomacichTvurcuVysledku
1
n3:pocetTvurcuVysledku
3
n3:rokUplatneniVysledku
n15:2012
n3:svazekPeriodika
160
n3:tvurceVysledku
Miller, Mirka Pérez-Rosés, Hebert Ryan, Joe
n3:wos
000305260600012
s:issn
0166-218X
s:numberOfPages
9
n8:doi
10.1016/j.dam.2012.03.035
n13:organizacniJednotka
23520