This HTML5 document contains 43 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
n15http://localhost/temp/predkladatel/
n21http://linked.opendata.cz/resource/domain/vavai/riv/tvurce/
n17http://linked.opendata.cz/resource/domain/vavai/projekt/
n6http://linked.opendata.cz/resource/domain/vavai/subjekt/
n5http://linked.opendata.cz/ontology/domain/vavai/
n14http://linked.opendata.cz/resource/domain/vavai/vysledek/RIV%2F47813059%3A19610%2F13%3A%230000368%21RIV13-GA0-19610___/
n4http://linked.opendata.cz/resource/domain/vavai/zamer/
shttp://schema.org/
skoshttp://www.w3.org/2004/02/skos/core#
rdfshttp://www.w3.org/2000/01/rdf-schema#
n3http://linked.opendata.cz/ontology/domain/vavai/riv/
n22http://bibframe.org/vocab/
n2http://linked.opendata.cz/resource/domain/vavai/vysledek/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n13http://linked.opendata.cz/ontology/domain/vavai/riv/klicoveSlovo/
n12http://linked.opendata.cz/ontology/domain/vavai/riv/duvernostUdaju/
xsdhhttp://www.w3.org/2001/XMLSchema#
n19http://linked.opendata.cz/ontology/domain/vavai/riv/jazykVysledku/
n16http://linked.opendata.cz/ontology/domain/vavai/riv/aktivita/
n20http://linked.opendata.cz/ontology/domain/vavai/riv/druhVysledku/
n18http://linked.opendata.cz/ontology/domain/vavai/riv/obor/
n10http://reference.data.gov.uk/id/gregorian-year/

Statements

Subject Item
n2:RIV%2F47813059%3A19610%2F13%3A%230000368%21RIV13-GA0-19610___
rdf:type
n5:Vysledek skos:Concept
rdfs:seeAlso
http://www.tandfonline.com/doi/abs/10.1080/10236198.2011.630316
dcterms:description
The original notion of distributional chaos introduced in 1994 by Schweizer and Smital for continuous maps of the interval was later generalized to arbitrary compact metric space, and three types, DC1-DC3, are now considered. However, most of the results concern the case when the scrambled set consists of two points, DC21-DC23. In this paper, we consider stronger versions of distributional chaos, DCu1-DCu3, where uncountable scrambled set is required. We show, among others, that these types and DC21-DC23 are mutually non-equivalent, even in the class of triangular maps of the square. The original notion of distributional chaos introduced in 1994 by Schweizer and Smital for continuous maps of the interval was later generalized to arbitrary compact metric space, and three types, DC1-DC3, are now considered. However, most of the results concern the case when the scrambled set consists of two points, DC21-DC23. In this paper, we consider stronger versions of distributional chaos, DCu1-DCu3, where uncountable scrambled set is required. We show, among others, that these types and DC21-DC23 are mutually non-equivalent, even in the class of triangular maps of the square.
dcterms:title
Strong and weak distributional chaos Strong and weak distributional chaos
skos:prefLabel
Strong and weak distributional chaos Strong and weak distributional chaos
skos:notation
RIV/47813059:19610/13:#0000368!RIV13-GA0-19610___
n5:predkladatel
n6:orjk%3A19610
n3:aktivita
n16:Z n16:P
n3:aktivity
P(GAP201/10/0887), Z(MSM4781305904)
n3:cisloPeriodika
1
n3:dodaniDat
n10:2013
n3:domaciTvurceVysledku
n21:9159282
n3:druhVysledku
n20:J
n3:duvernostUdaju
n12:S
n3:entitaPredkladatele
n14:predkladatel
n3:idSjednocenehoVysledku
108281
n3:idVysledku
RIV/47813059:19610/13:#0000368
n3:jazykVysledku
n19:eng
n3:klicovaSlova
triangular map; distributional chaos; Li-Yorke chaos
n3:klicoveSlovo
n13:Li-Yorke%20chaos n13:triangular%20map n13:distributional%20chaos
n3:kodStatuVydavatele
GB - Spojené království Velké Británie a Severního Irska
n3:kontrolniKodProRIV
[4C78EF1D3CF5]
n3:nazevZdroje
Journal of Difference Equations and Applications
n3:obor
n18:BA
n3:pocetDomacichTvurcuVysledku
1
n3:pocetTvurcuVysledku
1
n3:projekt
n17:GAP201%2F10%2F0887
n3:rokUplatneniVysledku
n10:2013
n3:svazekPeriodika
19
n3:tvurceVysledku
Štefánková, Marta
n3:wos
000313639600008
n3:zamer
n4:MSM4781305904
s:issn
1023-6198
s:numberOfPages
10
n22:doi
10.1080/10236198.2011.630316
n15:organizacniJednotka
19610