This HTML5 document contains 40 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
n5http://linked.opendata.cz/ontology/domain/vavai/riv/typAkce/
dctermshttp://purl.org/dc/terms/
n19http://purl.org/net/nknouf/ns/bibtex#
n16http://localhost/temp/predkladatel/
n20http://linked.opendata.cz/resource/domain/vavai/riv/tvurce/
n14http://linked.opendata.cz/resource/domain/vavai/projekt/
n11http://linked.opendata.cz/ontology/domain/vavai/
n9https://schema.org/
shttp://schema.org/
skoshttp://www.w3.org/2004/02/skos/core#
rdfshttp://www.w3.org/2000/01/rdf-schema#
n3http://linked.opendata.cz/ontology/domain/vavai/riv/
n2http://linked.opendata.cz/resource/domain/vavai/vysledek/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n22http://linked.opendata.cz/resource/domain/vavai/vysledek/RIV%2F47813059%3A19520%2F14%3A%230002945%21RIV15-GA0-19520___/
n8http://linked.opendata.cz/ontology/domain/vavai/riv/klicoveSlovo/
n4http://linked.opendata.cz/ontology/domain/vavai/riv/duvernostUdaju/
xsdhhttp://www.w3.org/2001/XMLSchema#
n18http://linked.opendata.cz/ontology/domain/vavai/riv/aktivita/
n15http://linked.opendata.cz/ontology/domain/vavai/riv/jazykVysledku/
n17http://linked.opendata.cz/ontology/domain/vavai/riv/obor/
n13http://linked.opendata.cz/ontology/domain/vavai/riv/druhVysledku/
n10http://reference.data.gov.uk/id/gregorian-year/

Statements

Subject Item
n2:RIV%2F47813059%3A19520%2F14%3A%230002945%21RIV15-GA0-19520___
rdf:type
n11:Vysledek skos:Concept
rdfs:seeAlso
http://mme2014.upol.cz/conference-proceedings
dcterms:description
This paper deals with pairwise comparison matrices with fuzzy elements from abelian linearly ordered group (alo-group) over a real interval. We generalize the concept of reciprocity and consistency of pairwise comparison matrices with triangular fuzzy numbers (PCFN matrices). We also define the concept of priority vector which is a generalization of the crisp concept. Such an approach allows for a generalization dealing both with the PCFN matrices on the additive, multiplicative and also fuzzy alo-groups. Numerical examples are presented to illustrate the concepts and derived properties. This paper deals with pairwise comparison matrices with fuzzy elements from abelian linearly ordered group (alo-group) over a real interval. We generalize the concept of reciprocity and consistency of pairwise comparison matrices with triangular fuzzy numbers (PCFN matrices). We also define the concept of priority vector which is a generalization of the crisp concept. Such an approach allows for a generalization dealing both with the PCFN matrices on the additive, multiplicative and also fuzzy alo-groups. Numerical examples are presented to illustrate the concepts and derived properties.
dcterms:title
Pairwise comparison matrix with fuzzy elements Pairwise comparison matrix with fuzzy elements
skos:prefLabel
Pairwise comparison matrix with fuzzy elements Pairwise comparison matrix with fuzzy elements
skos:notation
RIV/47813059:19520/14:#0002945!RIV15-GA0-19520___
n3:aktivita
n18:P
n3:aktivity
P(GA14-02424S)
n3:dodaniDat
n10:2015
n3:domaciTvurceVysledku
n20:9820434
n3:druhVysledku
n13:D
n3:duvernostUdaju
n4:S
n3:entitaPredkladatele
n22:predkladatel
n3:idSjednocenehoVysledku
35605
n3:idVysledku
RIV/47813059:19520/14:#0002945
n3:jazykVysledku
n15:eng
n3:klicovaSlova
multi-criteria optimization; pair-wise comparison matrix; fuzzy sets
n3:klicoveSlovo
n8:fuzzy%20sets n8:multi-criteria%20optimization n8:pair-wise%20comparison%20matrix
n3:kontrolniKodProRIV
[7506C9E06A76]
n3:mistoKonaniAkce
Palacký University, Olomouc
n3:mistoVydani
Olomouc
n3:nazevZdroje
32nd International Conference Mathematical Methods in Economics MME 2014, Conference Proceedings
n3:obor
n17:BB
n3:pocetDomacichTvurcuVysledku
1
n3:pocetTvurcuVysledku
1
n3:projekt
n14:GA14-02424S
n3:rokUplatneniVysledku
n10:2014
n3:tvurceVysledku
Ramík, Jaroslav
n3:typAkce
n5:CST
n3:zahajeniAkce
2014-09-10+02:00
s:numberOfPages
6
n19:hasPublisher
Univerzita Palackého v Olomouci
n9:isbn
978-80-244-4209-9
n16:organizacniJednotka
19520