This HTML5 document contains 41 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
n16http://purl.org/net/nknouf/ns/bibtex#
n13http://localhost/temp/predkladatel/
n18http://linked.opendata.cz/resource/domain/vavai/riv/tvurce/
n15http://linked.opendata.cz/resource/domain/vavai/projekt/
n17http://linked.opendata.cz/ontology/domain/vavai/
n11http://linked.opendata.cz/resource/domain/vavai/vysledek/RIV%2F47813059%3A19520%2F06%3A00000011%21RIV07-GA0-19520___/
n5https://schema.org/
shttp://schema.org/
n6http://linked.opendata.cz/ontology/domain/vavai/riv/
skoshttp://www.w3.org/2004/02/skos/core#
n2http://linked.opendata.cz/resource/domain/vavai/vysledek/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n20http://linked.opendata.cz/ontology/domain/vavai/riv/klicoveSlovo/
n19http://linked.opendata.cz/ontology/domain/vavai/riv/duvernostUdaju/
xsdhhttp://www.w3.org/2001/XMLSchema#
n12http://linked.opendata.cz/ontology/domain/vavai/riv/jazykVysledku/
n7http://linked.opendata.cz/ontology/domain/vavai/riv/aktivita/
n14http://linked.opendata.cz/ontology/domain/vavai/riv/obor/
n9http://linked.opendata.cz/ontology/domain/vavai/riv/druhVysledku/
n8http://reference.data.gov.uk/id/gregorian-year/

Statements

Subject Item
n2:RIV%2F47813059%3A19520%2F06%3A00000011%21RIV07-GA0-19520___
rdf:type
skos:Concept n17:Vysledek
dcterms:description
In this paper a class of fuzzy multiple objective linear programming (FMLP) problems based on fuzzy relations is introduced, the concepts of feasible and alpha-efficient solutions are defined. It is shown that the class of crisp (classical) LP problems and interval LP problems can be embedded into the class of FMLP ones. Moreover, for FMLP problems a new concept of duality is introduced and the weak and strong duality theorems are derived. Kapitola se zabývá problémy duality ve fuzzy vícekriteriálním programování s possibility a necessity relacemi. In this paper a class of fuzzy multiple objective linear programming (FMLP) problems based on fuzzy relations is introduced, the concepts of feasible and alpha-efficient solutions are defined. It is shown that the class of crisp (classical) LP problems and interval LP problems can be embedded into the class of FMLP ones. Moreover, for FMLP problems a new concept of duality is introduced and the weak and strong duality theorems are derived.
dcterms:title
Duality in fuzzy multiple objective linear programming with possibility and necessity relations Duality in fuzzy multiple objective linear programming with possibility and necessity relations Dualita ve fuzzy vícekriteriálním lineárním programování s possibility a necessity relacemi
skos:prefLabel
Dualita ve fuzzy vícekriteriálním lineárním programování s possibility a necessity relacemi Duality in fuzzy multiple objective linear programming with possibility and necessity relations Duality in fuzzy multiple objective linear programming with possibility and necessity relations
skos:notation
RIV/47813059:19520/06:00000011!RIV07-GA0-19520___
n6:strany
201-224
n6:aktivita
n7:P
n6:aktivity
P(GA402/06/0431)
n6:dodaniDat
n8:2007
n6:domaciTvurceVysledku
n18:9820434
n6:druhVysledku
n9:C
n6:duvernostUdaju
n19:S
n6:entitaPredkladatele
n11:predkladatel
n6:idSjednocenehoVysledku
472460
n6:idVysledku
RIV/47813059:19520/06:00000011
n6:jazykVysledku
n12:eng
n6:klicovaSlova
fuzzy optimization, fuzzy multiple objective linear programming, duality, fuzzy relations
n6:klicoveSlovo
n20:fuzzy%20relations n20:duality n20:fuzzy%20multiple%20objective%20linear%20programming n20:fuzzy%20optimization
n6:kontrolniKodProRIV
[1E7B6F646C33]
n6:mistoVydani
Katowice
n6:nazevZdroje
Multiple Cruteria Decision making
n6:obor
n14:BB
n6:pocetDomacichTvurcuVysledku
1
n6:pocetTvurcuVysledku
1
n6:projekt
n15:GA402%2F06%2F0431
n6:rokUplatneniVysledku
n8:2006
n6:tvurceVysledku
Ramík, Jaroslav
s:numberOfPages
24
n16:hasPublisher
Publisher of The Karol Adamiecki University of Economics
n5:isbn
83-7246-843-5
n13:organizacniJednotka
19520