This HTML5 document contains 45 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
n14http://linked.opendata.cz/ontology/domain/vavai/riv/typAkce/
dctermshttp://purl.org/dc/terms/
n17http://linked.opendata.cz/resource/domain/vavai/vysledek/RIV%2F25794787%3A_____%2F12%3A%230000480%21RIV13-MSM-25794787/
n18http://purl.org/net/nknouf/ns/bibtex#
n21http://linked.opendata.cz/resource/domain/vavai/riv/tvurce/
n16http://linked.opendata.cz/resource/domain/vavai/subjekt/
n15http://linked.opendata.cz/ontology/domain/vavai/
n9https://schema.org/
n4http://linked.opendata.cz/resource/domain/vavai/zamer/
shttp://schema.org/
skoshttp://www.w3.org/2004/02/skos/core#
n3http://linked.opendata.cz/ontology/domain/vavai/riv/
n2http://linked.opendata.cz/resource/domain/vavai/vysledek/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n5http://linked.opendata.cz/ontology/domain/vavai/riv/klicoveSlovo/
n13http://linked.opendata.cz/ontology/domain/vavai/riv/duvernostUdaju/
xsdhhttp://www.w3.org/2001/XMLSchema#
n20http://linked.opendata.cz/ontology/domain/vavai/riv/jazykVysledku/
n11http://linked.opendata.cz/ontology/domain/vavai/riv/aktivita/
n19http://linked.opendata.cz/ontology/domain/vavai/riv/druhVysledku/
n12http://linked.opendata.cz/ontology/domain/vavai/riv/obor/
n7http://reference.data.gov.uk/id/gregorian-year/

Statements

Subject Item
n2:RIV%2F25794787%3A_____%2F12%3A%230000480%21RIV13-MSM-25794787
rdf:type
skos:Concept n15:Vysledek
dcterms:description
The contribution deals with the use of artificial neural networks for prediction of corrosion loss of structural carbon steel. Nowadays there is certain chance to predict a corrosion loss of materials by artificial intelligence methods, especially by neural networks. A model of neural network for prediction of corrosion loss of structural carbon steel based on the input environmental parameters affecting the corrosion of metals in the atmospheric environment (temperature, relative humidity, air pollution by sulphur dioxide and the exposition time) was created. The model enables to predict corrosion loss of steel with a sufficiently small error. The contribution deals with the use of artificial neural networks for prediction of corrosion loss of structural carbon steel. Nowadays there is certain chance to predict a corrosion loss of materials by artificial intelligence methods, especially by neural networks. A model of neural network for prediction of corrosion loss of structural carbon steel based on the input environmental parameters affecting the corrosion of metals in the atmospheric environment (temperature, relative humidity, air pollution by sulphur dioxide and the exposition time) was created. The model enables to predict corrosion loss of steel with a sufficiently small error.
dcterms:title
Exploitation of Artificial Intelligence Methods for Prediction of Atmospheric Corrosion Exploitation of Artificial Intelligence Methods for Prediction of Atmospheric Corrosion
skos:prefLabel
Exploitation of Artificial Intelligence Methods for Prediction of Atmospheric Corrosion Exploitation of Artificial Intelligence Methods for Prediction of Atmospheric Corrosion
skos:notation
RIV/25794787:_____/12:#0000480!RIV13-MSM-25794787
n15:predkladatel
n16:ico%3A25794787
n3:aktivita
n11:Z
n3:aktivity
Z(MSM2579478701)
n3:dodaniDat
n7:2013
n3:domaciTvurceVysledku
n21:4247957
n3:druhVysledku
n19:D
n3:duvernostUdaju
n13:S
n3:entitaPredkladatele
n17:predkladatel
n3:idSjednocenehoVysledku
135810
n3:idVysledku
RIV/25794787:_____/12:#0000480
n3:jazykVysledku
n20:eng
n3:klicovaSlova
artificial neural networks; atmospheric corrosion; prediction; model
n3:klicoveSlovo
n5:artificial%20neural%20networks n5:model n5:prediction n5:atmospheric%20corrosion
n3:kontrolniKodProRIV
[FA529BEA6CAE]
n3:mistoKonaniAkce
Algarve, Portugalsko
n3:mistoVydani
Algarve, Portugalsko
n3:nazevZdroje
7th International Conference on Diffusion in Solids and Liquids: Mass Transfer, Heat Transfer and Microstructure and Properties DSL-2011
n3:obor
n12:JK
n3:pocetDomacichTvurcuVysledku
1
n3:pocetTvurcuVysledku
6
n3:rokUplatneniVysledku
n7:2012
n3:tvurceVysledku
Seidl, D. Kreislová, Kateřina Koštial, P. Kopal, I. Jančíková, Z. Ružiak, I.
n3:typAkce
n14:WRD
n3:zahajeniAkce
2011-01-01+01:00
n3:zamer
n4:MSM2579478701
s:numberOfPages
1
n18:hasPublisher
IRONIX CONFERENCES
n9:isbn
978-3-03785-400-6