This HTML5 document contains 45 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
n12http://localhost/temp/predkladatel/
n6http://linked.opendata.cz/resource/domain/vavai/riv/tvurce/
n5http://linked.opendata.cz/resource/domain/vavai/projekt/
n20http://linked.opendata.cz/resource/domain/vavai/subjekt/
n13http://linked.opendata.cz/ontology/domain/vavai/
skoshttp://www.w3.org/2004/02/skos/core#
rdfshttp://www.w3.org/2000/01/rdf-schema#
n3http://linked.opendata.cz/ontology/domain/vavai/riv/
n2http://linked.opendata.cz/resource/domain/vavai/vysledek/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n16http://linked.opendata.cz/ontology/domain/vavai/riv/vyuzitiJinymSubjektem/
n8http://linked.opendata.cz/ontology/domain/vavai/riv/klicoveSlovo/
n14http://linked.opendata.cz/ontology/domain/vavai/riv/duvernostUdaju/
xsdhhttp://www.w3.org/2001/XMLSchema#
n19http://linked.opendata.cz/ontology/domain/vavai/riv/jazykVysledku/
n18http://linked.opendata.cz/ontology/domain/vavai/riv/aktivita/
n15http://linked.opendata.cz/ontology/domain/vavai/riv/obor/
n17http://linked.opendata.cz/ontology/domain/vavai/riv/druhVysledku/
n4http://linked.opendata.cz/resource/domain/vavai/vysledek/RIV%2F00216305%3A26230%2F12%3APR26552%21RIV13-MSM-26230___/
n11http://reference.data.gov.uk/id/gregorian-year/

Statements

Subject Item
n2:RIV%2F00216305%3A26230%2F12%3APR26552%21RIV13-MSM-26230___
rdf:type
skos:Concept n13:Vysledek
rdfs:seeAlso
http://www.fit.vutbr.cz/research/prod/index.php?id=287
dcterms:description
Named Entity Recognizer and Classifier takes care of identification of relevant entities - names of people, places, artworks, etc. The matching of candidate terms is realized by means of the FSA technology. The data for each particular category is stored in a separate file. A joint list is compiled into a FSA that includes all terms together with their subcategorization. The disambiguation phase takes into account a context in which a particular NE candidate string appeared decides whether it really correspond to an entity in question. Relation extractor identifies textual fragments that express a particular relation between two or more entities (or values). It can work on a simple PoS-tagged data but it can also ask the Parser package to analyse the particular piece of text in question. Relation triggers - specific expressions that signal that a relation holds - form key elements of the identification. A CRF classifier is further employed to mark beginnings and ends of particular elements appearing in the relation. Named Entity Recognizer and Classifier takes care of identification of relevant entities - names of people, places, artworks, etc. The matching of candidate terms is realized by means of the FSA technology. The data for each particular category is stored in a separate file. A joint list is compiled into a FSA that includes all terms together with their subcategorization. The disambiguation phase takes into account a context in which a particular NE candidate string appeared decides whether it really correspond to an entity in question. Relation extractor identifies textual fragments that express a particular relation between two or more entities (or values). It can work on a simple PoS-tagged data but it can also ask the Parser package to analyse the particular piece of text in question. Relation triggers - specific expressions that signal that a relation holds - form key elements of the identification. A CRF classifier is further employed to mark beginnings and ends of particular elements appearing in the relation.
dcterms:title
Decipher NER a Decipher IE Decipher NER a Decipher IE
skos:prefLabel
Decipher NER a Decipher IE Decipher NER a Decipher IE
skos:notation
RIV/00216305:26230/12:PR26552!RIV13-MSM-26230___
n13:predkladatel
n20:orjk%3A26230
n3:aktivita
n18:P
n3:aktivity
P(7E11023), P(ED1.1.00/02.0070)
n3:dodaniDat
n11:2013
n3:domaciTvurceVysledku
n6:8642532 n6:1386492 n6:1574582 n6:4227670
n3:druhVysledku
n17:R
n3:duvernostUdaju
n14:S
n3:ekonomickeParametry
Svobodný software
n3:entitaPredkladatele
n4:predkladatel
n3:idSjednocenehoVysledku
129757
n3:idVysledku
RIV/00216305:26230/12:PR26552
n3:interniIdentifikace
Decipher NER+IR
n3:jazykVysledku
n19:eng
n3:klicovaSlova
Decipher, NER, IE
n3:klicoveSlovo
n8:IE n8:Decipher n8:NER
n3:kontrolniKodProRIV
[076E456DC804]
n3:obor
n15:JC
n3:pocetDomacichTvurcuVysledku
4
n3:pocetTvurcuVysledku
4
n3:projekt
n5:ED1.1.00%2F02.0070 n5:7E11023
n3:rokUplatneniVysledku
n11:2012
n3:technickeParametry
Pro podrobnosti licenčních podmínek konzultujte: Ing. Vladimír Pavelka, Útvar transferu technologií VUT v Brně, Božetěchova 2, 612 66 Brno, 541 141 499
n3:tvurceVysledku
Šafář, Martin Otrusina, Lubomír Sznapka, Jakub Smrž, Pavel
n3:vlastnik
n4:vlastnikVysledku
n3:vyuzitiJinymSubjektem
n16:N
n12:organizacniJednotka
26230