This HTML5 document contains 48 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
n10http://linked.opendata.cz/ontology/domain/vavai/riv/typAkce/
dctermshttp://purl.org/dc/terms/
n20http://localhost/temp/predkladatel/
n7http://purl.org/net/nknouf/ns/bibtex#
n8http://linked.opendata.cz/resource/domain/vavai/riv/tvurce/
n22http://linked.opendata.cz/resource/domain/vavai/subjekt/
n21http://linked.opendata.cz/resource/domain/vavai/vysledek/RIV%2F00216305%3A26230%2F11%3APU96146%21RIV12-MSM-26230___/
n14http://linked.opendata.cz/ontology/domain/vavai/
n15http://linked.opendata.cz/resource/domain/vavai/zamer/
n6https://schema.org/
shttp://schema.org/
skoshttp://www.w3.org/2004/02/skos/core#
n3http://linked.opendata.cz/ontology/domain/vavai/riv/
n2http://linked.opendata.cz/resource/domain/vavai/vysledek/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n4http://linked.opendata.cz/ontology/domain/vavai/riv/klicoveSlovo/
n19http://linked.opendata.cz/ontology/domain/vavai/riv/duvernostUdaju/
xsdhhttp://www.w3.org/2001/XMLSchema#
n18http://linked.opendata.cz/ontology/domain/vavai/riv/aktivita/
n9http://linked.opendata.cz/ontology/domain/vavai/riv/jazykVysledku/
n17http://linked.opendata.cz/ontology/domain/vavai/riv/obor/
n12http://linked.opendata.cz/ontology/domain/vavai/riv/druhVysledku/
n16http://reference.data.gov.uk/id/gregorian-year/

Statements

Subject Item
n2:RIV%2F00216305%3A26230%2F11%3APU96146%21RIV12-MSM-26230___
rdf:type
skos:Concept n14:Vysledek
dcterms:description
We have proposed a technique for discriminative training of the i-vector extractor parameters using cross-entropy as the error function. We have applied the technique both to the original i-vector extractor and to its simplified version. In both cases, the discriminative training was effective, giving higher relative improvement in the simplified case. We have proposed a technique for discriminative training of the i-vector extractor parameters using cross-entropy as the error function. We have applied the technique both to the original i-vector extractor and to its simplified version. In both cases, the discriminative training was effective, giving higher relative improvement in the simplified case.
dcterms:title
Discriminatively Trained i-vector Extractor for Speaker Verification Discriminatively Trained i-vector Extractor for Speaker Verification
skos:prefLabel
Discriminatively Trained i-vector Extractor for Speaker Verification Discriminatively Trained i-vector Extractor for Speaker Verification
skos:notation
RIV/00216305:26230/11:PU96146!RIV12-MSM-26230___
n14:predkladatel
n22:orjk%3A26230
n3:aktivita
n18:Z
n3:aktivity
Z(MSM0021630528)
n3:dodaniDat
n16:2012
n3:domaciTvurceVysledku
n8:3678539 n8:4922514 n8:2912988 n8:7822995
n3:druhVysledku
n12:D
n3:duvernostUdaju
n19:S
n3:entitaPredkladatele
n21:predkladatel
n3:idSjednocenehoVysledku
194814
n3:idVysledku
RIV/00216305:26230/11:PU96146
n3:jazykVysledku
n9:eng
n3:klicovaSlova
speaker verification, i-vectors, PLDA, discriminative training
n3:klicoveSlovo
n4:i-vectors n4:PLDA n4:discriminative%20training n4:speaker%20verification
n3:kontrolniKodProRIV
[478A70F8496D]
n3:mistoKonaniAkce
Florence Italy
n3:mistoVydani
Florence
n3:nazevZdroje
Proceedings of Interspeech 2011
n3:obor
n17:JC
n3:pocetDomacichTvurcuVysledku
4
n3:pocetTvurcuVysledku
5
n3:rokUplatneniVysledku
n16:2011
n3:tvurceVysledku
Matějka, Pavel Plchot, Oldřich Glembek, Ondřej Brümmer, Niko Burget, Lukáš
n3:typAkce
n10:WRD
n3:zahajeniAkce
2011-08-27+02:00
n3:zamer
n15:MSM0021630528
s:numberOfPages
4
n7:hasPublisher
International Speech Communication Association
n6:isbn
978-1-61839-270-1
n20:organizacniJednotka
26230