This HTML5 document contains 42 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
n10http://localhost/temp/predkladatel/
n5http://linked.opendata.cz/resource/domain/vavai/riv/tvurce/
n9http://linked.opendata.cz/resource/domain/vavai/vysledek/RIV%2F00216305%3A26230%2F11%3APR26016%21RIV12-MSM-26230___/
n7http://linked.opendata.cz/resource/domain/vavai/subjekt/
n6http://linked.opendata.cz/ontology/domain/vavai/
n14http://linked.opendata.cz/resource/domain/vavai/zamer/
skoshttp://www.w3.org/2004/02/skos/core#
rdfshttp://www.w3.org/2000/01/rdf-schema#
n3http://linked.opendata.cz/ontology/domain/vavai/riv/
n15http://linked.opendata.cz/ontology/domain/vavai/riv/licencniPoplatek/
n2http://linked.opendata.cz/resource/domain/vavai/vysledek/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n19http://linked.opendata.cz/ontology/domain/vavai/riv/vyuzitiJinymSubjektem/
n12http://linked.opendata.cz/ontology/domain/vavai/riv/klicoveSlovo/
n16http://linked.opendata.cz/ontology/domain/vavai/riv/duvernostUdaju/
xsdhhttp://www.w3.org/2001/XMLSchema#
n18http://linked.opendata.cz/ontology/domain/vavai/riv/aktivita/
n11http://linked.opendata.cz/ontology/domain/vavai/riv/jazykVysledku/
n20http://linked.opendata.cz/ontology/domain/vavai/riv/obor/
n13http://linked.opendata.cz/ontology/domain/vavai/riv/druhVysledku/
n17http://reference.data.gov.uk/id/gregorian-year/

Statements

Subject Item
n2:RIV%2F00216305%3A26230%2F11%3APR26016%21RIV12-MSM-26230___
rdf:type
skos:Concept n6:Vysledek
rdfs:seeAlso
http://www.fit.vutbr.cz/~bartik/Arcbc/cluster.htm
dcterms:description
The application for text clustering includes implementation of the SKWIC (Simultaneous keyword identification and clustering of text documents) clustering algorithm. Before the clustering process, it is possible to make some basic preprocessing tasks, such as stop words removal and English stemming via the Porter algorithm. The application for text clustering includes implementation of the SKWIC (Simultaneous keyword identification and clustering of text documents) clustering algorithm. Before the clustering process, it is possible to make some basic preprocessing tasks, such as stop words removal and English stemming via the Porter algorithm.
dcterms:title
SKWIC Text Clustering Tool SKWIC Text Clustering Tool
skos:prefLabel
SKWIC Text Clustering Tool SKWIC Text Clustering Tool
skos:notation
RIV/00216305:26230/11:PR26016!RIV12-MSM-26230___
n6:predkladatel
n7:orjk%3A26230
n3:aktivita
n18:Z
n3:aktivity
Z(MSM0021630528)
n3:dodaniDat
n17:2012
n3:domaciTvurceVysledku
n5:1346822 n5:7884869
n3:druhVysledku
n13:R
n3:duvernostUdaju
n16:S
n3:ekonomickeParametry
Produkt se poskytuje zdarma na základě uvedené licenční smlouvy.
n3:entitaPredkladatele
n9:predkladatel
n3:idSjednocenehoVysledku
229735
n3:idVysledku
RIV/00216305:26230/11:PR26016
n3:interniIdentifikace
SKWICClustering
n3:jazykVysledku
n11:eng
n3:klicovaSlova
clustering, text mining, SKWIC algorithm
n3:klicoveSlovo
n12:SKWIC%20algorithm n12:text%20mining n12:clustering
n3:kontrolniKodProRIV
[F93325970870]
n3:licencniPoplatek
n15:N
n3:lokalizaceVysledku
http://www.fit.vutbr.cz/~bartik/Arcbc/cluster.htm
n3:obor
n20:JC
n3:pocetDomacichTvurcuVysledku
2
n3:pocetTvurcuVysledku
2
n3:rokUplatneniVysledku
n17:2011
n3:technickeParametry
Knihovna v jazyce Java.
n3:tvurceVysledku
Miloš, Roman Bartík, Vladimír
n3:vlastnik
n9:vlastnikVysledku
n3:vyuzitiJinymSubjektem
n19:A
n3:zamer
n14:MSM0021630528
n10:organizacniJednotka
26230