This HTML5 document contains 36 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
n13http://localhost/temp/predkladatel/
n5http://linked.opendata.cz/resource/domain/vavai/riv/tvurce/
n8http://linked.opendata.cz/ontology/domain/vavai/
n15http://linked.opendata.cz/resource/domain/vavai/zamer/
shttp://schema.org/
skoshttp://www.w3.org/2004/02/skos/core#
n3http://linked.opendata.cz/ontology/domain/vavai/riv/
n11http://linked.opendata.cz/resource/domain/vavai/vysledek/RIV%2F00216305%3A26220%2F08%3APU75279%21RIV10-MSM-26220___/
n2http://linked.opendata.cz/resource/domain/vavai/vysledek/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n10http://linked.opendata.cz/ontology/domain/vavai/riv/klicoveSlovo/
n16http://linked.opendata.cz/ontology/domain/vavai/riv/duvernostUdaju/
xsdhhttp://www.w3.org/2001/XMLSchema#
n17http://linked.opendata.cz/ontology/domain/vavai/riv/jazykVysledku/
n12http://linked.opendata.cz/ontology/domain/vavai/riv/aktivita/
n18http://linked.opendata.cz/ontology/domain/vavai/riv/druhVysledku/
n9http://linked.opendata.cz/ontology/domain/vavai/riv/obor/
n6http://reference.data.gov.uk/id/gregorian-year/

Statements

Subject Item
n2:RIV%2F00216305%3A26220%2F08%3APU75279%21RIV10-MSM-26220___
rdf:type
n8:Vysledek skos:Concept
dcterms:description
Two topological spaces X, Y are mutually compacificable if there exists a compact topology on their disjoint union K in which the original topologies are induced from K and every two points, one from X and the other from Y, have disjoint neighborhoods. We introduce the classes of mutual compacitficability. Two topological spaces are of the same class if their behavior with respect mutual compactificability (i.e. the abilty to form the space K with any Y) is same. Two topological spaces X, Y are mutually compacificable if there exists a compact topology on their disjoint union K in which the original topologies are induced from K and every two points, one from X and the other from Y, have disjoint neighborhoods. We introduce the classes of mutual compacitficability. Two topological spaces are of the same class if their behavior with respect mutual compactificability (i.e. the abilty to form the space K with any Y) is same.
dcterms:title
The classes of mutual comaptificability The classes of mutual comaptificability
skos:prefLabel
The classes of mutual comaptificability The classes of mutual comaptificability
skos:notation
RIV/00216305:26220/08:PU75279!RIV10-MSM-26220___
n3:aktivita
n12:Z
n3:aktivity
Z(MSM0021630503)
n3:cisloPeriodika
Article ID
n3:dodaniDat
n6:2010
n3:domaciTvurceVysledku
n5:1500163
n3:druhVysledku
n18:J
n3:duvernostUdaju
n16:S
n3:entitaPredkladatele
n11:predkladatel
n3:idSjednocenehoVysledku
360084
n3:idVysledku
RIV/00216305:26220/08:PU75279
n3:jazykVysledku
n17:eng
n3:klicovaSlova
classes of mutual compactificability, theta-regular spaces
n3:klicoveSlovo
n10:classes%20of%20mutual%20compactificability n10:theta-regular%20spaces
n3:kodStatuVydavatele
CZ - Česká republika
n3:kontrolniKodProRIV
[7053C860A842]
n3:nazevZdroje
International Journal of Mathematics and Mathematical Sciences
n3:obor
n9:BA
n3:pocetDomacichTvurcuVysledku
1
n3:pocetTvurcuVysledku
1
n3:rokUplatneniVysledku
n6:2008
n3:svazekPeriodika
2007
n3:tvurceVysledku
Kovár, Martin
n3:zamer
n15:MSM0021630503
s:issn
0161-1712
s:numberOfPages
11
n13:organizacniJednotka
26220