This HTML5 document contains 46 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
n9http://linked.opendata.cz/ontology/domain/vavai/riv/typAkce/
dctermshttp://purl.org/dc/terms/
n16http://localhost/temp/predkladatel/
n13http://purl.org/net/nknouf/ns/bibtex#
n21http://linked.opendata.cz/resource/domain/vavai/riv/tvurce/
n17http://linked.opendata.cz/resource/domain/vavai/projekt/
n6http://linked.opendata.cz/ontology/domain/vavai/
n4https://schema.org/
shttp://schema.org/
n5http://linked.opendata.cz/ontology/domain/vavai/riv/
skoshttp://www.w3.org/2004/02/skos/core#
n2http://linked.opendata.cz/resource/domain/vavai/vysledek/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n11http://linked.opendata.cz/resource/domain/vavai/vysledek/RIV%2F00216305%3A26220%2F03%3APU37755%21RIV11-MSM-26220___/
n10http://linked.opendata.cz/ontology/domain/vavai/riv/klicoveSlovo/
n20http://linked.opendata.cz/ontology/domain/vavai/riv/duvernostUdaju/
xsdhhttp://www.w3.org/2001/XMLSchema#
n12http://linked.opendata.cz/ontology/domain/vavai/riv/jazykVysledku/
n7http://linked.opendata.cz/ontology/domain/vavai/riv/aktivita/
n18http://linked.opendata.cz/ontology/domain/vavai/riv/obor/
n14http://linked.opendata.cz/ontology/domain/vavai/riv/druhVysledku/
n8http://reference.data.gov.uk/id/gregorian-year/

Statements

Subject Item
n2:RIV%2F00216305%3A26220%2F03%3APU37755%21RIV11-MSM-26220___
rdf:type
skos:Concept n6:Vysledek
dcterms:description
This article deals with expert systems that have knowledge base realized through hierarchical structure of artificial neural networks. Characteristics, advantages and disadvantages of expert systems with knowledge base realized through standard methods are compared with the systems with implicit realization through neural networks. Possibility of knowledge base production automation, at defined set of data about the problem area, is dealt with. Mechanical learning algorithm C4.5 is used for automatic production of n-nary decision tree. This article deals with expert systems that have knowledge base realized through hierarchical structure of artificial neural networks. Characteristics, advantages and disadvantages of expert systems with knowledge base realized through standard methods are compared with the systems with implicit realization through neural networks. Possibility of knowledge base production automation, at defined set of data about the problem area, is dealt with. Mechanical learning algorithm C4.5 is used for automatic production of n-nary decision tree.
dcterms:title
Connectionist Expert System Connectionist Expert System
skos:prefLabel
Connectionist Expert System Connectionist Expert System
skos:notation
RIV/00216305:26220/03:PU37755!RIV11-MSM-26220___
n5:aktivita
n7:V n7:P
n5:aktivity
P(GA102/01/1485), V
n5:dodaniDat
n8:2011
n5:domaciTvurceVysledku
n21:8359474 n21:6308759
n5:druhVysledku
n14:D
n5:duvernostUdaju
n20:S
n5:entitaPredkladatele
n11:predkladatel
n5:idSjednocenehoVysledku
602030
n5:idVysledku
RIV/00216305:26220/03:PU37755
n5:jazykVysledku
n12:eng
n5:klicovaSlova
expert system, neural-expert system, connectionist expert system, knowledge base, neural network, decision tree, C4.5
n5:klicoveSlovo
n10:neural%20network n10:knowledge%20base n10:neural-expert%20system n10:decision%20tree n10:C4.5 n10:connectionist%20expert%20system n10:expert%20system
n5:kontrolniKodProRIV
[6719680A462F]
n5:mistoKonaniAkce
Brno
n5:mistoVydani
Brno
n5:nazevZdroje
Mendel 2003
n5:obor
n18:JC
n5:pocetDomacichTvurcuVysledku
2
n5:pocetTvurcuVysledku
2
n5:projekt
n17:GA102%2F01%2F1485
n5:rokUplatneniVysledku
n8:2003
n5:tvurceVysledku
Jašík, Jaromír Jirsík, Václav
n5:typAkce
n9:EUR
n5:zahajeniAkce
2003-06-04+02:00
s:numberOfPages
4
n13:hasPublisher
Vysoké učení technické v Brně
n4:isbn
80-214-2411-7
n16:organizacniJednotka
26220