This HTML5 document contains 43 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
n16http://localhost/temp/predkladatel/
n13http://linked.opendata.cz/resource/domain/vavai/riv/tvurce/
n10http://linked.opendata.cz/resource/domain/vavai/projekt/
n14http://linked.opendata.cz/resource/domain/vavai/subjekt/
n9http://linked.opendata.cz/ontology/domain/vavai/
n12http://linked.opendata.cz/resource/domain/vavai/vysledek/RIV%2F00216305%3A26210%2F13%3APU101371%21RIV14-MSM-26210___/
shttp://schema.org/
skoshttp://www.w3.org/2004/02/skos/core#
n3http://linked.opendata.cz/ontology/domain/vavai/riv/
n2http://linked.opendata.cz/resource/domain/vavai/vysledek/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n5http://linked.opendata.cz/ontology/domain/vavai/riv/klicoveSlovo/
n15http://linked.opendata.cz/ontology/domain/vavai/riv/duvernostUdaju/
xsdhhttp://www.w3.org/2001/XMLSchema#
n19http://linked.opendata.cz/ontology/domain/vavai/riv/aktivita/
n11http://linked.opendata.cz/ontology/domain/vavai/riv/jazykVysledku/
n18http://linked.opendata.cz/ontology/domain/vavai/riv/obor/
n17http://linked.opendata.cz/ontology/domain/vavai/riv/druhVysledku/
n8http://reference.data.gov.uk/id/gregorian-year/

Statements

Subject Item
n2:RIV%2F00216305%3A26210%2F13%3APU101371%21RIV14-MSM-26210___
rdf:type
n9:Vysledek skos:Concept
dcterms:description
We study a pretopology on $\mathbb Z^2$ having the property that the Khalimsky topology is one of its quotient pretopologies. Using this fact, we prove an analogue of the Jordan curve theorem for this pretopology thus showing that such a pretopology provides a large variety of digital Jordan curves. Some consequences of this result are discussed, too. We study a pretopology on $\mathbb Z^2$ having the property that the Khalimsky topology is one of its quotient pretopologies. Using this fact, we prove an analogue of the Jordan curve theorem for this pretopology thus showing that such a pretopology provides a large variety of digital Jordan curves. Some consequences of this result are discussed, too. We study a pretopology on $\mathbb Z^2$ having the property that the Khalimsky topology is one of its quotient pretopologies. Using this fact, we prove an analogue of the Jordan curve theorem for this pretopology thus showing that such a pretopology provides a large variety of digital Jordan curves. Some consequences of this result are discussed, too.
dcterms:title
A Jordan curve theorem with respect to a pretopology on Z^2 A Jordan curve theorem with respect to a pretopology on Z^2 A Jordan curve theorem with respect to a pretopology on Z^2
skos:prefLabel
A Jordan curve theorem with respect to a pretopology on Z^2 A Jordan curve theorem with respect to a pretopology on Z^2 A Jordan curve theorem with respect to a pretopology on Z^2
skos:notation
RIV/00216305:26210/13:PU101371!RIV14-MSM-26210___
n9:predkladatel
n14:orjk%3A26210
n3:aktivita
n19:P
n3:aktivity
P(ED1.1.00/02.0070)
n3:cisloPeriodika
8
n3:dodaniDat
n8:2014
n3:domaciTvurceVysledku
n13:7983697
n3:druhVysledku
n17:J
n3:duvernostUdaju
n15:S
n3:entitaPredkladatele
n12:predkladatel
n3:idSjednocenehoVysledku
58666
n3:idVysledku
RIV/00216305:26210/13:PU101371
n3:jazykVysledku
n11:cze
n3:klicovaSlova
quasi-discrete pretopology, quotient pretopology, connectedness graph, digital plane, Jordan curve
n3:klicoveSlovo
n5:digital%20plane n5:quotient%20pretopology n5:connectedness%20graph n5:Jordan%20curve n5:quasi-discrete%20pretopology
n3:kodStatuVydavatele
GB - Spojené království Velké Británie a Severního Irska
n3:kontrolniKodProRIV
[127D26BA8B03]
n3:nazevZdroje
International Journal of Computer Mathematics
n3:obor
n18:BA
n3:pocetDomacichTvurcuVysledku
1
n3:pocetTvurcuVysledku
1
n3:projekt
n10:ED1.1.00%2F02.0070
n3:rokUplatneniVysledku
n8:2013
n3:svazekPeriodika
90
n3:tvurceVysledku
Šlapal, Josef
s:issn
0020-7160
s:numberOfPages
11
n16:organizacniJednotka
26210