This HTML5 document contains 41 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
n13http://linked.opendata.cz/ontology/domain/vavai/riv/typAkce/
dctermshttp://purl.org/dc/terms/
n12http://localhost/temp/predkladatel/
n14http://purl.org/net/nknouf/ns/bibtex#
n5http://linked.opendata.cz/resource/domain/vavai/vysledek/RIV%2F00216305%3A26210%2F10%3APU88892%21RIV11-MSM-26210___/
n19http://linked.opendata.cz/resource/domain/vavai/riv/tvurce/
n10http://linked.opendata.cz/ontology/domain/vavai/
n21https://schema.org/
n6http://linked.opendata.cz/resource/domain/vavai/zamer/
shttp://schema.org/
skoshttp://www.w3.org/2004/02/skos/core#
n3http://linked.opendata.cz/ontology/domain/vavai/riv/
n2http://linked.opendata.cz/resource/domain/vavai/vysledek/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n16http://linked.opendata.cz/ontology/domain/vavai/riv/klicoveSlovo/
n20http://linked.opendata.cz/ontology/domain/vavai/riv/duvernostUdaju/
xsdhhttp://www.w3.org/2001/XMLSchema#
n9http://linked.opendata.cz/ontology/domain/vavai/riv/jazykVysledku/
n4http://linked.opendata.cz/ontology/domain/vavai/riv/aktivita/
n17http://linked.opendata.cz/ontology/domain/vavai/riv/obor/
n15http://linked.opendata.cz/ontology/domain/vavai/riv/druhVysledku/
n8http://reference.data.gov.uk/id/gregorian-year/

Statements

Subject Item
n2:RIV%2F00216305%3A26210%2F10%3APU88892%21RIV11-MSM-26210___
rdf:type
n10:Vysledek skos:Concept
dcterms:description
Fractional differential equations with Riemann-Liouville differential operator appear in many applications. Considering these problems, initial or boundary conditions are naturally given via noninteger order integrals and derivatives. In this paper we focus on a test linear initial-value problem with Riemann-Liouville fractional derivative. We are going to introduce a discretization of this problem which allows to involve initial conditions of a noninteger order. We illustrate it by a few examples. Fractional differential equations with Riemann-Liouville differential operator appear in many applications. Considering these problems, initial or boundary conditions are naturally given via noninteger order integrals and derivatives. In this paper we focus on a test linear initial-value problem with Riemann-Liouville fractional derivative. We are going to introduce a discretization of this problem which allows to involve initial conditions of a noninteger order. We illustrate it by a few examples.
dcterms:title
On a Discretization of the Initial Value Problem for a Linear Nonhomogeneous Fractional Differential Equation On a Discretization of the Initial Value Problem for a Linear Nonhomogeneous Fractional Differential Equation
skos:prefLabel
On a Discretization of the Initial Value Problem for a Linear Nonhomogeneous Fractional Differential Equation On a Discretization of the Initial Value Problem for a Linear Nonhomogeneous Fractional Differential Equation
skos:notation
RIV/00216305:26210/10:PU88892!RIV11-MSM-26210___
n3:aktivita
n4:Z n4:S
n3:aktivity
S, Z(MSM0021630518)
n3:dodaniDat
n8:2011
n3:domaciTvurceVysledku
n19:3178722
n3:druhVysledku
n15:D
n3:duvernostUdaju
n20:S
n3:entitaPredkladatele
n5:predkladatel
n3:idSjednocenehoVysledku
276622
n3:idVysledku
RIV/00216305:26210/10:PU88892
n3:jazykVysledku
n9:eng
n3:klicovaSlova
Riemann-Liouville operator, initial-value problem, discretization, sequential algorithms
n3:klicoveSlovo
n16:initial-value%20problem n16:sequential%20algorithms n16:discretization n16:Riemann-Liouville%20operator
n3:kontrolniKodProRIV
[7E6009EA29F1]
n3:mistoKonaniAkce
Badajoz
n3:mistoVydani
Badajoz, Španělsko
n3:nazevZdroje
Proceedings of FDA'10
n3:obor
n17:BA
n3:pocetDomacichTvurcuVysledku
1
n3:pocetTvurcuVysledku
1
n3:rokUplatneniVysledku
n8:2010
n3:tvurceVysledku
Kisela, Tomáš
n3:typAkce
n13:WRD
n3:zahajeniAkce
2010-10-18+02:00
n3:zamer
n6:MSM0021630518
s:numberOfPages
6
n14:hasPublisher
Technical University of Kosice and University of Extremadura
n21:isbn
978-80-553-0487-8
n12:organizacniJednotka
26210