This HTML5 document contains 40 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
n14http://linked.opendata.cz/ontology/domain/vavai/riv/typAkce/
dctermshttp://purl.org/dc/terms/
n11http://localhost/temp/predkladatel/
n3http://purl.org/net/nknouf/ns/bibtex#
n18http://linked.opendata.cz/resource/domain/vavai/riv/tvurce/
n9http://linked.opendata.cz/ontology/domain/vavai/
n16http://linked.opendata.cz/resource/domain/vavai/zamer/
shttp://schema.org/
skoshttp://www.w3.org/2004/02/skos/core#
n5http://linked.opendata.cz/ontology/domain/vavai/riv/
n13http://linked.opendata.cz/resource/domain/vavai/vysledek/RIV%2F00216305%3A26210%2F04%3APU46847%21RIV11-MSM-26210___/
n2http://linked.opendata.cz/resource/domain/vavai/vysledek/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n7http://linked.opendata.cz/ontology/domain/vavai/riv/klicoveSlovo/
n19http://linked.opendata.cz/ontology/domain/vavai/riv/duvernostUdaju/
xsdhhttp://www.w3.org/2001/XMLSchema#
n20http://linked.opendata.cz/ontology/domain/vavai/riv/aktivita/
n8http://linked.opendata.cz/ontology/domain/vavai/riv/jazykVysledku/
n10http://linked.opendata.cz/ontology/domain/vavai/riv/druhVysledku/
n6http://linked.opendata.cz/ontology/domain/vavai/riv/obor/
n17http://reference.data.gov.uk/id/gregorian-year/

Statements

Subject Item
n2:RIV%2F00216305%3A26210%2F04%3APU46847%21RIV11-MSM-26210___
rdf:type
n9:Vysledek skos:Concept
dcterms:description
The most powerful methods of systems analysis have been developed for linear control systems. For a linear control system, all the relationships between the variables are linear differential equations, usually with constant coefficients. But actual control systems usually contain some nonlinear elements. Three methods for stability analysis of nonlinear control systems will be introduced in this lecture: method of linearization, Lyapunov direct method and Popov criterion. Since stability analysis of nonlinear control systems is difficult task in engineering practice, these methods are made easier and tabulated. In the lecture we will show how the equations for nonlinear elements may be linearized. But the result is applicable only in a small enough region. When all the roots of the characteristic equation are located in the left half-plane, the system is stable. We can construct the table includes the nonlinear equations and their the linear approximation. Then it is easy to find out if the nonl The most powerful methods of systems analysis have been developed for linear control systems. For a linear control system, all the relationships between the variables are linear differential equations, usually with constant coefficients. But actual control systems usually contain some nonlinear elements. Three methods for stability analysis of nonlinear control systems will be introduced in this lecture: method of linearization, Lyapunov direct method and Popov criterion. Since stability analysis of nonlinear control systems is difficult task in engineering practice, these methods are made easier and tabulated. In the lecture we will show how the equations for nonlinear elements may be linearized. But the result is applicable only in a small enough region. When all the roots of the characteristic equation are located in the left half-plane, the system is stable. We can construct the table includes the nonlinear equations and their the linear approximation. Then it is easy to find out if the nonl
dcterms:title
Stability Analysis of Nonlinear Control Systems Stability Analysis of Nonlinear Control Systems
skos:prefLabel
Stability Analysis of Nonlinear Control Systems Stability Analysis of Nonlinear Control Systems
skos:notation
RIV/00216305:26210/04:PU46847!RIV11-MSM-26210___
n5:aktivita
n20:V n20:Z
n5:aktivity
V, Z(MSM 260000013)
n5:dodaniDat
n17:2011
n5:domaciTvurceVysledku
n18:3153487
n5:druhVysledku
n10:D
n5:duvernostUdaju
n19:S
n5:entitaPredkladatele
n13:predkladatel
n5:idSjednocenehoVysledku
587689
n5:idVysledku
RIV/00216305:26210/04:PU46847
n5:jazykVysledku
n8:eng
n5:klicovaSlova
Popov criterion, Lyapunov criterion, linearization, transfer function.
n5:klicoveSlovo
n7:Lyapunov%20criterion n7:linearization n7:transfer%20function. n7:Popov%20criterion
n5:kontrolniKodProRIV
[0BD0C13DDBAD]
n5:mistoKonaniAkce
Graz
n5:mistoVydani
Graz
n5:nazevZdroje
Summer School on Control Theory and Applications
n5:obor
n6:BC
n5:pocetDomacichTvurcuVysledku
1
n5:pocetTvurcuVysledku
1
n5:rokUplatneniVysledku
n17:2004
n5:tvurceVysledku
Švarc, Ivan
n5:typAkce
n14:EUR
n5:zahajeniAkce
2004-09-01+02:00
n5:zamer
n16:MSM%20260000013
s:numberOfPages
1
n3:hasPublisher
Graz University of Technology
n11:organizacniJednotka
26210