This HTML5 document contains 37 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
n12http://purl.org/net/nknouf/ns/bibtex#
n9http://localhost/temp/predkladatel/
n20http://linked.opendata.cz/resource/domain/vavai/riv/tvurce/
n15http://linked.opendata.cz/resource/domain/vavai/projekt/
n17http://linked.opendata.cz/ontology/domain/vavai/
n3https://schema.org/
shttp://schema.org/
skoshttp://www.w3.org/2004/02/skos/core#
n4http://linked.opendata.cz/ontology/domain/vavai/riv/
n16http://linked.opendata.cz/resource/domain/vavai/vysledek/RIV%2F00216275%3A25410%2F09%3A00009280%21RIV10-MZP-25410___/
n2http://linked.opendata.cz/resource/domain/vavai/vysledek/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n6http://linked.opendata.cz/ontology/domain/vavai/riv/klicoveSlovo/
n18http://linked.opendata.cz/ontology/domain/vavai/riv/duvernostUdaju/
xsdhhttp://www.w3.org/2001/XMLSchema#
n19http://linked.opendata.cz/ontology/domain/vavai/riv/jazykVysledku/
n11http://linked.opendata.cz/ontology/domain/vavai/riv/aktivita/
n14http://linked.opendata.cz/ontology/domain/vavai/riv/obor/
n5http://linked.opendata.cz/ontology/domain/vavai/riv/druhVysledku/
n10http://reference.data.gov.uk/id/gregorian-year/

Statements

Subject Item
n2:RIV%2F00216275%3A25410%2F09%3A00009280%21RIV10-MZP-25410___
rdf:type
skos:Concept n17:Vysledek
dcterms:description
The chapter presents the parameters design for air quality modelling. Further, the chapter presents the basic concepts of fuzzy logic neural networks (FLNNs). The proposed model realizes the advantages of both the unsupervised methods (combination of the Kohonen's self-organizing maps and K-means algorithm) and FLNN. The final part of the paper includes modelling and analysis of the results. The chapter presents the parameters design for air quality modelling. Further, the chapter presents the basic concepts of fuzzy logic neural networks (FLNNs). The proposed model realizes the advantages of both the unsupervised methods (combination of the Kohonen's self-organizing maps and K-means algorithm) and FLNN. The final part of the paper includes modelling and analysis of the results.
dcterms:title
Air Quality Modelling by Neuro-Fuzzy Systems Air Quality Modelling by Neuro-Fuzzy Systems
skos:prefLabel
Air Quality Modelling by Neuro-Fuzzy Systems Air Quality Modelling by Neuro-Fuzzy Systems
skos:notation
RIV/00216275:25410/09:00009280!RIV10-MZP-25410___
n4:aktivita
n11:P
n4:aktivity
P(SP/4I2/60/07)
n4:dodaniDat
n10:2010
n4:domaciTvurceVysledku
n20:7141319
n4:druhVysledku
n5:C
n4:duvernostUdaju
n18:S
n4:entitaPredkladatele
n16:predkladatel
n4:idSjednocenehoVysledku
302209
n4:idVysledku
RIV/00216275:25410/09:00009280
n4:jazykVysledku
n19:eng
n4:klicovaSlova
Air quality; modelling; fuzzy logic neural networks
n4:klicoveSlovo
n6:fuzzy%20logic%20neural%20networks n6:Air%20quality n6:modelling
n4:kontrolniKodProRIV
[7257600666E8]
n4:mistoVydani
Praha
n4:nazevZdroje
Modelling of Selected areas of Sustainable Development by Artificial Intelligence and Soft Computing - Regional level
n4:obor
n14:IN
n4:pocetDomacichTvurcuVysledku
1
n4:pocetStranKnihy
152
n4:pocetTvurcuVysledku
1
n4:projekt
n15:SP%2F4I2%2F60%2F07
n4:rokUplatneniVysledku
n10:2009
n4:tvurceVysledku
Hájek, Petr
s:numberOfPages
14
n12:hasPublisher
GRADA Publishing a.s.
n3:isbn
978-80-247-3167-4
n9:organizacniJednotka
25410