This HTML5 document contains 44 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
n15http://linked.opendata.cz/ontology/domain/vavai/riv/typAkce/
dctermshttp://purl.org/dc/terms/
n20http://purl.org/net/nknouf/ns/bibtex#
n11http://localhost/temp/predkladatel/
n16http://linked.opendata.cz/resource/domain/vavai/riv/tvurce/
n4http://linked.opendata.cz/ontology/domain/vavai/
n17http://linked.opendata.cz/resource/domain/vavai/zamer/
n5https://schema.org/
shttp://schema.org/
skoshttp://www.w3.org/2004/02/skos/core#
n6http://linked.opendata.cz/ontology/domain/vavai/riv/
n2http://linked.opendata.cz/resource/domain/vavai/vysledek/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n10http://linked.opendata.cz/ontology/domain/vavai/riv/klicoveSlovo/
n18http://linked.opendata.cz/ontology/domain/vavai/riv/duvernostUdaju/
xsdhhttp://www.w3.org/2001/XMLSchema#
n12http://linked.opendata.cz/ontology/domain/vavai/riv/jazykVysledku/
n14http://linked.opendata.cz/ontology/domain/vavai/riv/aktivita/
n7http://linked.opendata.cz/resource/domain/vavai/vysledek/RIV%2F00216275%3A25410%2F04%3A00001220%21RIV08-MSM-25410___/
n13http://linked.opendata.cz/ontology/domain/vavai/riv/druhVysledku/
n9http://linked.opendata.cz/ontology/domain/vavai/riv/obor/
n19http://reference.data.gov.uk/id/gregorian-year/

Statements

Subject Item
n2:RIV%2F00216275%3A25410%2F04%3A00001220%21RIV08-MSM-25410___
rdf:type
n4:Vysledek skos:Concept
dcterms:description
In this paper is presented a proposal of genetic algorithm for knowledge discovery process. Data mining (the process of extracting trends or patterns from data) is used in database of bus lines carriers here. The aim is to find link between bus line revenue and significant factors affecting public transport demand. There are many data mining methods used in knowledge discovery in databases. Genetic algorithms belong to the field of evolutionary computation and in special case could be used in data mining. There is shown how to change the basic form of genetic algorithm (representation, operators etc.) to obtain important knowledge about transport demand in the paper. In this paper is presented a proposal of genetic algorithm for knowledge discovery process. Data mining (the process of extracting trends or patterns from data) is used in database of bus lines carriers here. The aim is to find link between bus line revenue and significant factors affecting public transport demand. There are many data mining methods used in knowledge discovery in databases. Genetic algorithms belong to the field of evolutionary computation and in special case could be used in data mining. There is shown how to change the basic form of genetic algorithm (representation, operators etc.) to obtain important knowledge about transport demand in the paper. In this paper is presented a proposal of genetic algorithm for knowledge discovery process. Data mining (the process of extracting trends or patterns from data) is used in database of bus lines carriers here. The aim is to find link between bus line revenue and significant factors affecting public transport demand. There are many data mining methods used in knowledge discovery in databases. Genetic algorithms belong to the field of evolutionary computation and in special case could be used in data mining. There is shown how to change the basic form of genetic algorithm (representation, operators etc.) to obtain important knowledge about transport demand in the paper.
dcterms:title
Využití genetických algoritmů na bázi data miningu v modelování poptávky po veřejné dopravě A genetic algorithm-based data mining approach to modeling of public transport demand A genetic algorithm-based data mining approach to modeling of public transport demand
skos:prefLabel
A genetic algorithm-based data mining approach to modeling of public transport demand A genetic algorithm-based data mining approach to modeling of public transport demand Využití genetických algoritmů na bázi data miningu v modelování poptávky po veřejné dopravě
skos:notation
RIV/00216275:25410/04:00001220!RIV08-MSM-25410___
n6:strany
6
n6:aktivita
n14:S n14:Z
n6:aktivity
S, Z(MSM 254100001)
n6:dodaniDat
n19:2008
n6:domaciTvurceVysledku
n16:8242577
n6:druhVysledku
n13:D
n6:duvernostUdaju
n18:S
n6:entitaPredkladatele
n7:predkladatel
n6:idSjednocenehoVysledku
552929
n6:idVysledku
RIV/00216275:25410/04:00001220
n6:jazykVysledku
n12:eng
n6:klicovaSlova
genetic algorithms; public transport demand; data-mining
n6:klicoveSlovo
n10:genetic%20algorithms n10:data-mining n10:public%20transport%20demand
n6:kontrolniKodProRIV
[64EA9D8707A9]
n6:mistoKonaniAkce
Banská Bystrica, Slovak Republic
n6:mistoVydani
Banská Bystrica
n6:nazevZdroje
Európske financie - teória, politika a prax
n6:obor
n9:BD
n6:pocetDomacichTvurcuVysledku
1
n6:pocetTvurcuVysledku
1
n6:rokUplatneniVysledku
n19:2004
n6:tvurceVysledku
Bartoníček, Tomáš
n6:typAkce
n15:EUR
n6:zahajeniAkce
2004-01-01+01:00
n6:zamer
n17:MSM%20254100001
s:numberOfPages
6
n20:hasPublisher
Univerzita Mateja Bela v Banskej Bystrici
n5:isbn
80-8055-968-6
n11:organizacniJednotka
25410