This HTML5 document contains 41 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
n22http://linked.opendata.cz/ontology/domain/vavai/riv/typAkce/
dctermshttp://purl.org/dc/terms/
n21http://purl.org/net/nknouf/ns/bibtex#
n10http://localhost/temp/predkladatel/
n20http://linked.opendata.cz/resource/domain/vavai/projekt/
n6http://linked.opendata.cz/resource/domain/vavai/riv/tvurce/
n18http://linked.opendata.cz/resource/domain/vavai/subjekt/
n17http://linked.opendata.cz/ontology/domain/vavai/
n19https://schema.org/
shttp://schema.org/
skoshttp://www.w3.org/2004/02/skos/core#
rdfshttp://www.w3.org/2000/01/rdf-schema#
n3http://linked.opendata.cz/ontology/domain/vavai/riv/
n2http://linked.opendata.cz/resource/domain/vavai/vysledek/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n11http://linked.opendata.cz/ontology/domain/vavai/riv/klicoveSlovo/
n7http://linked.opendata.cz/ontology/domain/vavai/riv/duvernostUdaju/
xsdhhttp://www.w3.org/2001/XMLSchema#
n9http://linked.opendata.cz/ontology/domain/vavai/riv/jazykVysledku/
n8http://linked.opendata.cz/ontology/domain/vavai/riv/aktivita/
n16http://linked.opendata.cz/ontology/domain/vavai/riv/druhVysledku/
n23http://linked.opendata.cz/resource/domain/vavai/vysledek/RIV%2F00216224%3A14330%2F12%3A00062319%21RIV13-MSM-14330___/
n12http://linked.opendata.cz/ontology/domain/vavai/riv/obor/
n5http://reference.data.gov.uk/id/gregorian-year/

Statements

Subject Item
n2:RIV%2F00216224%3A14330%2F12%3A00062319%21RIV13-MSM-14330___
rdf:type
skos:Concept n17:Vysledek
rdfs:seeAlso
http://raslan2012.nlp-consulting.net/
dcterms:description
In this paper we present a new method for measuring semantic relatedness of lexical units, which can be used to generate a thesaurus automatically. The method is based on a comparison of probability distributions of semantic frames generated using the LDA-frames algorithm. The idea is evaluated by measuring the overlap of WordNet synsets and generated semantic clusters. The results show that the method outperforms another automatic approach used in the Sketch Engine project. In this paper we present a new method for measuring semantic relatedness of lexical units, which can be used to generate a thesaurus automatically. The method is based on a comparison of probability distributions of semantic frames generated using the LDA-frames algorithm. The idea is evaluated by measuring the overlap of WordNet synsets and generated semantic clusters. The results show that the method outperforms another automatic approach used in the Sketch Engine project.
dcterms:title
Building A Thesaurus Using LDA-Frames Building A Thesaurus Using LDA-Frames
skos:prefLabel
Building A Thesaurus Using LDA-Frames Building A Thesaurus Using LDA-Frames
skos:notation
RIV/00216224:14330/12:00062319!RIV13-MSM-14330___
n17:predkladatel
n18:orjk%3A14330
n3:aktivita
n8:S n8:P
n3:aktivity
P(LM2010013), S
n3:dodaniDat
n5:2013
n3:domaciTvurceVysledku
n6:5438233
n3:druhVysledku
n16:D
n3:duvernostUdaju
n7:S
n3:entitaPredkladatele
n23:predkladatel
n3:idSjednocenehoVysledku
125660
n3:idVysledku
RIV/00216224:14330/12:00062319
n3:jazykVysledku
n9:eng
n3:klicovaSlova
LDA-frames; thesaurus
n3:klicoveSlovo
n11:thesaurus n11:LDA-frames
n3:kontrolniKodProRIV
[A986F4956FEB]
n3:mistoKonaniAkce
Karlova Studánka, Czech Republic
n3:mistoVydani
Brno
n3:nazevZdroje
6th Workshop on Recent Advances in Slavonic Natural Language Processing
n3:obor
n12:IN
n3:pocetDomacichTvurcuVysledku
1
n3:pocetTvurcuVysledku
1
n3:projekt
n20:LM2010013
n3:rokUplatneniVysledku
n5:2012
n3:tvurceVysledku
Materna, Jiří
n3:typAkce
n22:CST
n3:zahajeniAkce
2012-12-07+01:00
s:numberOfPages
7
n21:hasPublisher
Tribun EU
n19:isbn
9788026303138
n10:organizacniJednotka
14330