This HTML5 document contains 39 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
n12http://linked.opendata.cz/resource/domain/vavai/vysledek/RIV%2F00216224%3A14310%2F03%3A00058746%21RIV13-MSM-14310___/
n15http://localhost/temp/predkladatel/
n18http://linked.opendata.cz/resource/domain/vavai/riv/tvurce/
n13http://linked.opendata.cz/ontology/domain/vavai/
n16http://linked.opendata.cz/resource/domain/vavai/zamer/
shttp://schema.org/
n5http://linked.opendata.cz/ontology/domain/vavai/riv/
skoshttp://www.w3.org/2004/02/skos/core#
n2http://linked.opendata.cz/resource/domain/vavai/vysledek/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n6http://linked.opendata.cz/ontology/domain/vavai/riv/klicoveSlovo/
n17http://linked.opendata.cz/ontology/domain/vavai/riv/duvernostUdaju/
xsdhhttp://www.w3.org/2001/XMLSchema#
n14http://linked.opendata.cz/ontology/domain/vavai/riv/jazykVysledku/
n7http://linked.opendata.cz/ontology/domain/vavai/riv/aktivita/
n9http://linked.opendata.cz/ontology/domain/vavai/riv/druhVysledku/
n8http://linked.opendata.cz/ontology/domain/vavai/riv/obor/
n11http://reference.data.gov.uk/id/gregorian-year/

Statements

Subject Item
n2:RIV%2F00216224%3A14310%2F03%3A00058746%21RIV13-MSM-14310___
rdf:type
n13:Vysledek skos:Concept
dcterms:description
Nonparametric density estimates attempt to reconstruct the probability density from which a random sample has come. A large part of the literature on density estimation is concerned with the issue of how to choose the degree of smoothness of the estimate. This paper describes the principle of maximal smoothing. The formula for asymptotically optimal bandwidth $h_f$ with respect to MISE is well-known. This formula depends on $\integral(f^{(k)}(x))^2dx$ reciprocally, where $f$ is an unknown probability density function. Our goal will be to make this integral as small as possible. Then we obtain the upper boundary for the bandwidth. The prsented paper is dealing with this procedure. Nonparametric density estimates attempt to reconstruct the probability density from which a random sample has come. A large part of the literature on density estimation is concerned with the issue of how to choose the degree of smoothness of the estimate. This paper describes the principle of maximal smoothing. The formula for asymptotically optimal bandwidth $h_f$ with respect to MISE is well-known. This formula depends on $\integral(f^{(k)}(x))^2dx$ reciprocally, where $f$ is an unknown probability density function. Our goal will be to make this integral as small as possible. Then we obtain the upper boundary for the bandwidth. The prsented paper is dealing with this procedure.
dcterms:title
Maximal Smoothing Maximal Smoothing
skos:prefLabel
Maximal Smoothing Maximal Smoothing
skos:notation
RIV/00216224:14310/03:00058746!RIV13-MSM-14310___
n5:aktivita
n7:Z
n5:aktivity
Z(MSM 143100001)
n5:cisloPeriodika
2
n5:dodaniDat
n11:2013
n5:domaciTvurceVysledku
n18:4304373
n5:druhVysledku
n9:J
n5:duvernostUdaju
n17:S
n5:entitaPredkladatele
n12:predkladatel
n5:idSjednocenehoVysledku
614536
n5:idVysledku
RIV/00216224:14310/03:00058746
n5:jazykVysledku
n14:eng
n5:klicovaSlova
Kernel; density; estimate; bandwidth; maximal smoothing principle
n5:klicoveSlovo
n6:maximal%20smoothing%20principle n6:Kernel n6:density n6:estimate n6:bandwidth
n5:kodStatuVydavatele
SK - Slovenská republika
n5:kontrolniKodProRIV
[AA84BBF7636D]
n5:nazevZdroje
Journal of Electrical Engineering
n5:obor
n8:BB
n5:pocetDomacichTvurcuVysledku
1
n5:pocetTvurcuVysledku
1
n5:rokUplatneniVysledku
n11:2003
n5:svazekPeriodika
54
n5:tvurceVysledku
Řezáč, Martin
n5:zamer
n16:MSM%20143100001
s:issn
1335-3632
s:numberOfPages
3
n15:organizacniJednotka
14310