This HTML5 document contains 57 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
n20http://localhost/temp/predkladatel/
n17http://linked.opendata.cz/resource/domain/vavai/riv/tvurce/
n8http://linked.opendata.cz/resource/domain/vavai/projekt/
n16http://linked.opendata.cz/ontology/domain/vavai/
n11http://linked.opendata.cz/resource/domain/vavai/vysledek/RIV%2F00216208%3A11320%2F14%3A10290876%21RIV15-MSM-11320___/
shttp://schema.org/
skoshttp://www.w3.org/2004/02/skos/core#
rdfshttp://www.w3.org/2000/01/rdf-schema#
n3http://linked.opendata.cz/ontology/domain/vavai/riv/
n15http://bibframe.org/vocab/
n2http://linked.opendata.cz/resource/domain/vavai/vysledek/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n7http://linked.opendata.cz/ontology/domain/vavai/riv/klicoveSlovo/
n19http://linked.opendata.cz/ontology/domain/vavai/riv/duvernostUdaju/
xsdhhttp://www.w3.org/2001/XMLSchema#
n10http://linked.opendata.cz/ontology/domain/vavai/riv/jazykVysledku/
n5http://linked.opendata.cz/ontology/domain/vavai/riv/aktivita/
n13http://linked.opendata.cz/ontology/domain/vavai/riv/obor/
n9http://linked.opendata.cz/ontology/domain/vavai/riv/druhVysledku/
n14http://reference.data.gov.uk/id/gregorian-year/

Statements

Subject Item
n2:RIV%2F00216208%3A11320%2F14%3A10290876%21RIV15-MSM-11320___
rdf:type
n16:Vysledek skos:Concept
rdfs:seeAlso
http://dx.doi.org/10.1002/admi.201300042
dcterms:description
Silicon, a semiconductor underpinning the vast majority of microelectronics, is an indirect-gap material and consequently is an inefficient light emitter. This hampers the ongoing worldwide effort towards the integration of optoelectronics on silicon wafers. Even though silicon nanocrystals are much better light emitters, they retain the indirect-gap nature. Here, we propose a solution to this long-standing problem: silicon nanocrystals can be transformed into a material with fundamental direct bandgap via a concerted action of quantum confinement and tensile strain. We document this transformation by DFT calculations mapping the E(k) band-structure of Si nanocrystals. The experimental proofs are then given firstly by a 10 000x increase in the photon emission rate of strained silicon nanocrystals together with their altered absorbance spectra, both of which point to direct dipole-allowed transitions, secondly by single nanocrystal spectroscopy, confirming reduced phonon energies and thus the presence of tensile strain, and lastly by photoluminescence studies under external hydrostatic pressure Silicon, a semiconductor underpinning the vast majority of microelectronics, is an indirect-gap material and consequently is an inefficient light emitter. This hampers the ongoing worldwide effort towards the integration of optoelectronics on silicon wafers. Even though silicon nanocrystals are much better light emitters, they retain the indirect-gap nature. Here, we propose a solution to this long-standing problem: silicon nanocrystals can be transformed into a material with fundamental direct bandgap via a concerted action of quantum confinement and tensile strain. We document this transformation by DFT calculations mapping the E(k) band-structure of Si nanocrystals. The experimental proofs are then given firstly by a 10 000x increase in the photon emission rate of strained silicon nanocrystals together with their altered absorbance spectra, both of which point to direct dipole-allowed transitions, secondly by single nanocrystal spectroscopy, confirming reduced phonon energies and thus the presence of tensile strain, and lastly by photoluminescence studies under external hydrostatic pressure
dcterms:title
Direct Bandgap Silicon: Tensile-Strained Silicon Nanocrystals Direct Bandgap Silicon: Tensile-Strained Silicon Nanocrystals
skos:prefLabel
Direct Bandgap Silicon: Tensile-Strained Silicon Nanocrystals Direct Bandgap Silicon: Tensile-Strained Silicon Nanocrystals
skos:notation
RIV/00216208:11320/14:10290876!RIV15-MSM-11320___
n3:aktivita
n5:S n5:P n5:I
n3:aktivity
I, P(GAP204/10/0952), P(GBP108/12/G108), P(GPP204/12/P235), S
n3:cisloPeriodika
2
n3:dodaniDat
n14:2015
n3:domaciTvurceVysledku
n17:7725604
n3:druhVysledku
n9:J
n3:duvernostUdaju
n19:S
n3:entitaPredkladatele
n11:predkladatel
n3:idSjednocenehoVysledku
11633
n3:idVysledku
RIV/00216208:11320/14:10290876
n3:jazykVysledku
n10:eng
n3:klicovaSlova
semiconductor; ge; absorption; luminescence; photoluminescence; raman-spectroscopy; quantum confinement; si nanocrystals; room-temperature; optical-transitions
n3:klicoveSlovo
n7:photoluminescence n7:optical-transitions n7:luminescence n7:quantum%20confinement n7:room-temperature n7:absorption n7:si%20nanocrystals n7:semiconductor n7:raman-spectroscopy n7:ge
n3:kodStatuVydavatele
DE - Spolková republika Německo
n3:kontrolniKodProRIV
[EB4D4C13DF74]
n3:nazevZdroje
ADVANCED MATERIALS INTERFACES
n3:obor
n13:BM
n3:pocetDomacichTvurcuVysledku
1
n3:pocetTvurcuVysledku
7
n3:projekt
n8:GPP204%2F12%2FP235 n8:GBP108%2F12%2FG108 n8:GAP204%2F10%2F0952
n3:rokUplatneniVysledku
n14:2014
n3:svazekPeriodika
1
n3:tvurceVysledku
Hapala, Prokop Kusova, Katerina Cibulka, Ondrej Valenta, Jan Ondic, Lukas Jelínek, Pavel Pelant, Ivan
n3:wos
000348282400005
s:issn
2196-7350
s:numberOfPages
9
n15:doi
10.1002/admi.201300042
n20:organizacniJednotka
11320