This HTML5 document contains 44 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
n17http://localhost/temp/predkladatel/
n16http://linked.opendata.cz/resource/domain/vavai/projekt/
n5http://linked.opendata.cz/resource/domain/vavai/riv/tvurce/
n18http://linked.opendata.cz/resource/domain/vavai/vysledek/RIV%2F00216208%3A11320%2F14%3A10285166%21RIV15-MSM-11320___/
n15http://linked.opendata.cz/ontology/domain/vavai/
shttp://schema.org/
n4http://linked.opendata.cz/ontology/domain/vavai/riv/
rdfshttp://www.w3.org/2000/01/rdf-schema#
skoshttp://www.w3.org/2004/02/skos/core#
n14http://bibframe.org/vocab/
n2http://linked.opendata.cz/resource/domain/vavai/vysledek/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n13http://linked.opendata.cz/ontology/domain/vavai/riv/klicoveSlovo/
n19http://linked.opendata.cz/ontology/domain/vavai/riv/duvernostUdaju/
xsdhhttp://www.w3.org/2001/XMLSchema#
n12http://linked.opendata.cz/ontology/domain/vavai/riv/jazykVysledku/
n9http://linked.opendata.cz/ontology/domain/vavai/riv/aktivita/
n11http://linked.opendata.cz/ontology/domain/vavai/riv/druhVysledku/
n7http://linked.opendata.cz/ontology/domain/vavai/riv/obor/
n6http://reference.data.gov.uk/id/gregorian-year/

Statements

Subject Item
n2:RIV%2F00216208%3A11320%2F14%3A10285166%21RIV15-MSM-11320___
rdf:type
skos:Concept n15:Vysledek
rdfs:seeAlso
http://dx.doi.org/10.1112/blms/bdt069
dcterms:description
For any set of modules S, we prove the existence of precovers (right approximations) for all classes of modules of bounded C-resolution dimension, where C is the class of all S-filtered modules. In contrast, we use infinite-dimensional tilting theory to show that the class of all locally free modules induced by a non-Sigma-pure-split tilting module is not precovering. Consequently, the class of all locally Baer modules is not precovering for any countable hereditary artin algebra of infinite representation type. For any set of modules S, we prove the existence of precovers (right approximations) for all classes of modules of bounded C-resolution dimension, where C is the class of all S-filtered modules. In contrast, we use infinite-dimensional tilting theory to show that the class of all locally free modules induced by a non-Sigma-pure-split tilting module is not precovering. Consequently, the class of all locally Baer modules is not precovering for any countable hereditary artin algebra of infinite representation type.
dcterms:title
Approximations and locally free modules Approximations and locally free modules
skos:prefLabel
Approximations and locally free modules Approximations and locally free modules
skos:notation
RIV/00216208:11320/14:10285166!RIV15-MSM-11320___
n4:aktivita
n9:S n9:P n9:I
n4:aktivity
I, P(GA201/09/0816), S
n4:cisloPeriodika
2014
n4:dodaniDat
n6:2015
n4:domaciTvurceVysledku
n5:6265219 n5:9323325
n4:druhVysledku
n11:J
n4:duvernostUdaju
n19:S
n4:entitaPredkladatele
n18:predkladatel
n4:idSjednocenehoVysledku
3940
n4:idVysledku
RIV/00216208:11320/14:10285166
n4:jazykVysledku
n12:eng
n4:klicovaSlova
covers; cotorsion pairs; compactness theorem
n4:klicoveSlovo
n13:cotorsion%20pairs n13:compactness%20theorem n13:covers
n4:kodStatuVydavatele
GB - Spojené království Velké Británie a Severního Irska
n4:kontrolniKodProRIV
[45F53E07F1AA]
n4:nazevZdroje
Bulletin of the London Mathematical Society
n4:obor
n7:BA
n4:pocetDomacichTvurcuVysledku
2
n4:pocetTvurcuVysledku
2
n4:projekt
n16:GA201%2F09%2F0816
n4:rokUplatneniVysledku
n6:2014
n4:svazekPeriodika
46
n4:tvurceVysledku
Trlifaj, Jan Slávik, Alexander
n4:wos
000330193400008
s:issn
0024-6093
s:numberOfPages
15
n14:doi
10.1112/blms/bdt069
n17:organizacniJednotka
11320