This HTML5 document contains 48 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
n6http://linked.opendata.cz/ontology/domain/vavai/riv/typAkce/
dctermshttp://purl.org/dc/terms/
n14http://purl.org/net/nknouf/ns/bibtex#
n12http://localhost/temp/predkladatel/
n23http://linked.opendata.cz/resource/domain/vavai/projekt/
n9http://linked.opendata.cz/resource/domain/vavai/riv/tvurce/
n18http://linked.opendata.cz/resource/domain/vavai/subjekt/
n17http://linked.opendata.cz/ontology/domain/vavai/
n15https://schema.org/
shttp://schema.org/
rdfshttp://www.w3.org/2000/01/rdf-schema#
skoshttp://www.w3.org/2004/02/skos/core#
n4http://linked.opendata.cz/ontology/domain/vavai/riv/
n22http://bibframe.org/vocab/
n19http://linked.opendata.cz/resource/domain/vavai/vysledek/RIV%2F00216208%3A11320%2F13%3A10195087%21RIV14-GA0-11320___/
n2http://linked.opendata.cz/resource/domain/vavai/vysledek/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n5http://linked.opendata.cz/ontology/domain/vavai/riv/klicoveSlovo/
n24http://linked.opendata.cz/ontology/domain/vavai/riv/duvernostUdaju/
xsdhhttp://www.w3.org/2001/XMLSchema#
n21http://linked.opendata.cz/ontology/domain/vavai/riv/aktivita/
n11http://linked.opendata.cz/ontology/domain/vavai/riv/jazykVysledku/
n20http://linked.opendata.cz/ontology/domain/vavai/riv/obor/
n16http://linked.opendata.cz/ontology/domain/vavai/riv/druhVysledku/
n8http://reference.data.gov.uk/id/gregorian-year/

Statements

Subject Item
n2:RIV%2F00216208%3A11320%2F13%3A10195087%21RIV14-GA0-11320___
rdf:type
skos:Concept n17:Vysledek
rdfs:seeAlso
http://artemis.ms.mff.cuni.cz/main/papers/2013-BideCernyBrom-TowardsNarrativeClustering.pdf
dcterms:description
Interactive storytelling systems are capable of producing many variants of stories. A major challenge in designing storytelling systems is the evaluation of the resulting narrative. Ideally every variant of the resulting story should be seen and evaluated, but due to combinatorial explosion of the story space, this is unfeasible in all but the smallest domains. However, the system designer still needs to have control over the generated stories and his input cannot be replaced by a computer. In this paper we propose a general methodology for semi-automatic evaluation of narrative systems based on tension curve extraction and clustering of similar stories. Our preliminary results indicate that a straightforward approach works well in simple scenarios, but for complex story spaces further improvements are necessary. Interactive storytelling systems are capable of producing many variants of stories. A major challenge in designing storytelling systems is the evaluation of the resulting narrative. Ideally every variant of the resulting story should be seen and evaluated, but due to combinatorial explosion of the story space, this is unfeasible in all but the smallest domains. However, the system designer still needs to have control over the generated stories and his input cannot be replaced by a computer. In this paper we propose a general methodology for semi-automatic evaluation of narrative systems based on tension curve extraction and clustering of similar stories. Our preliminary results indicate that a straightforward approach works well in simple scenarios, but for complex story spaces further improvements are necessary.
dcterms:title
Towards Automatic Story Clustering for Interactive Narrative Authoring Towards Automatic Story Clustering for Interactive Narrative Authoring
skos:prefLabel
Towards Automatic Story Clustering for Interactive Narrative Authoring Towards Automatic Story Clustering for Interactive Narrative Authoring
skos:notation
RIV/00216208:11320/13:10195087!RIV14-GA0-11320___
n17:predkladatel
n18:orjk%3A11320
n4:aktivita
n21:S n21:P
n4:aktivity
P(GAP103/10/1287), S
n4:dodaniDat
n8:2014
n4:domaciTvurceVysledku
n9:8452709 n9:1226282 n9:3785041
n4:druhVysledku
n16:D
n4:duvernostUdaju
n24:S
n4:entitaPredkladatele
n19:predkladatel
n4:idSjednocenehoVysledku
111355
n4:idVysledku
RIV/00216208:11320/13:10195087
n4:jazykVysledku
n11:eng
n4:klicovaSlova
clustering; evaluation; Interactive digital storytelling
n4:klicoveSlovo
n5:Interactive%20digital%20storytelling n5:evaluation n5:clustering
n4:kontrolniKodProRIV
[708CC14642F7]
n4:mistoKonaniAkce
Istanbul, Turkey
n4:mistoVydani
Berlin
n4:nazevZdroje
Lecture Notes in Computer Science
n4:obor
n20:IN
n4:pocetDomacichTvurcuVysledku
3
n4:pocetTvurcuVysledku
3
n4:projekt
n23:GAP103%2F10%2F1287
n4:rokUplatneniVysledku
n8:2013
n4:tvurceVysledku
Černý, Martin Brom, Cyril Bída, Michal
n4:typAkce
n6:WRD
n4:zahajeniAkce
2013-11-06+01:00
s:issn
0302-9743
s:numberOfPages
12
n22:doi
10.1007/978-3-319-02756-2_11
n14:hasPublisher
Springer International Publishing
n15:isbn
978-3-319-02755-5
n12:organizacniJednotka
11320