This HTML5 document contains 43 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
n8http://localhost/temp/predkladatel/
n21http://linked.opendata.cz/resource/domain/vavai/riv/tvurce/
n14http://linked.opendata.cz/resource/domain/vavai/projekt/
n13http://linked.opendata.cz/resource/domain/vavai/subjekt/
n7http://linked.opendata.cz/ontology/domain/vavai/
n4http://linked.opendata.cz/resource/domain/vavai/vysledek/RIV%2F00216208%3A11320%2F12%3A10121238%21RIV13-GA0-11320___/
shttp://schema.org/
skoshttp://www.w3.org/2004/02/skos/core#
rdfshttp://www.w3.org/2000/01/rdf-schema#
n3http://linked.opendata.cz/ontology/domain/vavai/riv/
n18http://bibframe.org/vocab/
n2http://linked.opendata.cz/resource/domain/vavai/vysledek/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n5http://linked.opendata.cz/ontology/domain/vavai/riv/klicoveSlovo/
n15http://linked.opendata.cz/ontology/domain/vavai/riv/duvernostUdaju/
xsdhhttp://www.w3.org/2001/XMLSchema#
n20http://linked.opendata.cz/ontology/domain/vavai/riv/jazykVysledku/
n17http://linked.opendata.cz/ontology/domain/vavai/riv/aktivita/
n16http://linked.opendata.cz/ontology/domain/vavai/riv/druhVysledku/
n11http://linked.opendata.cz/ontology/domain/vavai/riv/obor/
n10http://reference.data.gov.uk/id/gregorian-year/

Statements

Subject Item
n2:RIV%2F00216208%3A11320%2F12%3A10121238%21RIV13-GA0-11320___
rdf:type
n7:Vysledek skos:Concept
rdfs:seeAlso
http://www.sciencedirect.com/science/article/pii/S0957417412002059
dcterms:description
Collaborative filtering is an efficient way to find best objects to recommend. This technique is particularly useful when there is a lot of users that rated a lot of objects. In this paper, we propose a method that improve the Collaborative filtering in situations, where the number of ratings or users is small. The pro- posed approach is experimentally evaluated on real datasets with very convincing results. Collaborative filtering is an efficient way to find best objects to recommend. This technique is particularly useful when there is a lot of users that rated a lot of objects. In this paper, we propose a method that improve the Collaborative filtering in situations, where the number of ratings or users is small. The pro- posed approach is experimentally evaluated on real datasets with very convincing results.
dcterms:title
Similarity of users' (content-based) preference models for Collaborative filtering in few ratings scenario Similarity of users' (content-based) preference models for Collaborative filtering in few ratings scenario
skos:prefLabel
Similarity of users' (content-based) preference models for Collaborative filtering in few ratings scenario Similarity of users' (content-based) preference models for Collaborative filtering in few ratings scenario
skos:notation
RIV/00216208:11320/12:10121238!RIV13-GA0-11320___
n7:predkladatel
n13:orjk%3A11320
n3:aktivita
n17:S n17:P
n3:aktivity
P(GAP202/10/0761), P(GD201/09/H057), S
n3:cisloPeriodika
14
n3:dodaniDat
n10:2013
n3:domaciTvurceVysledku
n21:1357026
n3:druhVysledku
n16:J
n3:duvernostUdaju
n15:S
n3:entitaPredkladatele
n4:predkladatel
n3:idSjednocenehoVysledku
167879
n3:idVysledku
RIV/00216208:11320/12:10121238
n3:jazykVysledku
n20:eng
n3:klicovaSlova
Machine learning; Preference learning; Collaborative filtering
n3:klicoveSlovo
n5:Collaborative%20filtering n5:Preference%20learning n5:Machine%20learning
n3:kodStatuVydavatele
GB - Spojené království Velké Británie a Severního Irska
n3:kontrolniKodProRIV
[A203636407C3]
n3:nazevZdroje
Expert Systems with Applications
n3:obor
n11:IN
n3:pocetDomacichTvurcuVysledku
1
n3:pocetTvurcuVysledku
1
n3:projekt
n14:GAP202%2F10%2F0761 n14:GD201%2F09%2FH057
n3:rokUplatneniVysledku
n10:2012
n3:svazekPeriodika
2012
n3:tvurceVysledku
Eckhardt, Alan
n3:wos
000305597700001
s:issn
0957-4174
s:numberOfPages
6
n18:doi
10.1016/j.eswa.2012.01.177
n8:organizacniJednotka
11320