This HTML5 document contains 42 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
n20http://localhost/temp/predkladatel/
n15http://linked.opendata.cz/resource/domain/vavai/riv/tvurce/
n8http://linked.opendata.cz/resource/domain/vavai/projekt/
n12http://linked.opendata.cz/resource/domain/vavai/subjekt/
n10http://linked.opendata.cz/ontology/domain/vavai/
shttp://schema.org/
skoshttp://www.w3.org/2004/02/skos/core#
rdfshttp://www.w3.org/2000/01/rdf-schema#
n3http://linked.opendata.cz/ontology/domain/vavai/riv/
n11http://bibframe.org/vocab/
n2http://linked.opendata.cz/resource/domain/vavai/vysledek/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n18http://linked.opendata.cz/resource/domain/vavai/vysledek/RIV%2F00216208%3A11320%2F12%3A10105060%21RIV13-GA0-11320___/
n6http://linked.opendata.cz/ontology/domain/vavai/riv/klicoveSlovo/
n21http://linked.opendata.cz/ontology/domain/vavai/riv/duvernostUdaju/
xsdhhttp://www.w3.org/2001/XMLSchema#
n13http://linked.opendata.cz/ontology/domain/vavai/riv/jazykVysledku/
n4http://linked.opendata.cz/ontology/domain/vavai/riv/aktivita/
n16http://linked.opendata.cz/ontology/domain/vavai/riv/obor/
n5http://linked.opendata.cz/ontology/domain/vavai/riv/druhVysledku/
n17http://reference.data.gov.uk/id/gregorian-year/

Statements

Subject Item
n2:RIV%2F00216208%3A11320%2F12%3A10105060%21RIV13-GA0-11320___
rdf:type
n10:Vysledek skos:Concept
rdfs:seeAlso
http://journals.impan.gov.pl/fm/Inf/216-2-2.html
dcterms:description
Let X be an arbitrary metric space and P be a porosity-like relation on X. We describe an infinite game which gives a characterization of sigma-P-porous sets in X. This characterization can be applied to ordinary porosity above all but also to many other variants of porosity. Let X be an arbitrary metric space and P be a porosity-like relation on X. We describe an infinite game which gives a characterization of sigma-P-porous sets in X. This characterization can be applied to ordinary porosity above all but also to many other variants of porosity.
dcterms:title
Characterization of sigma-porosity via an infinite game Characterization of sigma-porosity via an infinite game
skos:prefLabel
Characterization of sigma-porosity via an infinite game Characterization of sigma-porosity via an infinite game
skos:notation
RIV/00216208:11320/12:10105060!RIV13-GA0-11320___
n10:predkladatel
n12:orjk%3A11320
n3:aktivita
n4:P n4:S
n3:aktivity
P(GA201/09/0067), S
n3:cisloPeriodika
2
n3:dodaniDat
n17:2013
n3:domaciTvurceVysledku
n15:8418837
n3:druhVysledku
n5:J
n3:duvernostUdaju
n21:S
n3:entitaPredkladatele
n18:predkladatel
n3:idSjednocenehoVysledku
126837
n3:idVysledku
RIV/00216208:11320/12:10105060
n3:jazykVysledku
n13:eng
n3:klicovaSlova
porosity; sigma-porosity; infinite games
n3:klicoveSlovo
n6:infinite%20games n6:porosity n6:sigma-porosity
n3:kodStatuVydavatele
PL - Polská republika
n3:kontrolniKodProRIV
[5956B1D8F7BE]
n3:nazevZdroje
Fundamenta Mathematicae
n3:obor
n16:BA
n3:pocetDomacichTvurcuVysledku
1
n3:pocetTvurcuVysledku
1
n3:projekt
n8:GA201%2F09%2F0067
n3:rokUplatneniVysledku
n17:2012
n3:svazekPeriodika
216
n3:tvurceVysledku
Doležal, Martin
n3:wos
000302440700002
s:issn
0016-2736
s:numberOfPages
10
n11:doi
10.4064/fm216-2-2
n20:organizacniJednotka
11320