This HTML5 document contains 42 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
n8http://localhost/temp/predkladatel/
n13http://linked.opendata.cz/resource/domain/vavai/projekt/
n11http://linked.opendata.cz/resource/domain/vavai/riv/tvurce/
n15http://linked.opendata.cz/resource/domain/vavai/subjekt/
n6http://linked.opendata.cz/ontology/domain/vavai/
n5http://linked.opendata.cz/resource/domain/vavai/vysledek/RIV%2F00216208%3A11320%2F11%3A10103435%21RIV12-AV0-11320___/
n19http://linked.opendata.cz/resource/domain/vavai/zamer/
shttp://schema.org/
skoshttp://www.w3.org/2004/02/skos/core#
n3http://linked.opendata.cz/ontology/domain/vavai/riv/
n20http://bibframe.org/vocab/
n2http://linked.opendata.cz/resource/domain/vavai/vysledek/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n12http://linked.opendata.cz/ontology/domain/vavai/riv/klicoveSlovo/
n9http://linked.opendata.cz/ontology/domain/vavai/riv/duvernostUdaju/
xsdhhttp://www.w3.org/2001/XMLSchema#
n17http://linked.opendata.cz/ontology/domain/vavai/riv/jazykVysledku/
n14http://linked.opendata.cz/ontology/domain/vavai/riv/aktivita/
n21http://linked.opendata.cz/ontology/domain/vavai/riv/obor/
n18http://linked.opendata.cz/ontology/domain/vavai/riv/druhVysledku/
n4http://reference.data.gov.uk/id/gregorian-year/

Statements

Subject Item
n2:RIV%2F00216208%3A11320%2F11%3A10103435%21RIV12-AV0-11320___
rdf:type
n6:Vysledek skos:Concept
dcterms:description
This paper is inspired by a counterexample of J. Kurzweil, whose intention was to demonstrate that a certain property of linear operators on finite-dimensional spaces need not be preserved in infinite dimension. We obtain a stronger result, which says that no infinite-dimensional Banach space can have the given property. Along the way, we will also derive an interesting proposition related to Dvoretzky's theorem. This paper is inspired by a counterexample of J. Kurzweil, whose intention was to demonstrate that a certain property of linear operators on finite-dimensional spaces need not be preserved in infinite dimension. We obtain a stronger result, which says that no infinite-dimensional Banach space can have the given property. Along the way, we will also derive an interesting proposition related to Dvoretzky's theorem.
dcterms:title
On a characteristic property of finite-dimensional Banach spaces On a characteristic property of finite-dimensional Banach spaces
skos:prefLabel
On a characteristic property of finite-dimensional Banach spaces On a characteristic property of finite-dimensional Banach spaces
skos:notation
RIV/00216208:11320/11:10103435!RIV12-AV0-11320___
n6:predkladatel
n15:orjk%3A11320
n3:aktivita
n14:Z n14:P
n3:aktivity
P(KJB101120802), Z(MSM0021620839)
n3:cisloPeriodika
3
n3:dodaniDat
n4:2012
n3:domaciTvurceVysledku
n11:4013441
n3:druhVysledku
n18:J
n3:duvernostUdaju
n9:S
n3:entitaPredkladatele
n5:predkladatel
n3:idSjednocenehoVysledku
217941
n3:idVysledku
RIV/00216208:11320/11:10103435
n3:jazykVysledku
n17:eng
n3:klicovaSlova
Dvoretzky's theorem; product integration; norm inequality
n3:klicoveSlovo
n12:norm%20inequality n12:product%20integration n12:Dvoretzky%27s%20theorem
n3:kodStatuVydavatele
GB - Spojené království Velké Británie a Severního Irska
n3:kontrolniKodProRIV
[9F76B2717659]
n3:nazevZdroje
Glasgow Mathematical Journal
n3:obor
n21:BA
n3:pocetDomacichTvurcuVysledku
1
n3:pocetTvurcuVysledku
1
n3:projekt
n13:KJB101120802
n3:rokUplatneniVysledku
n4:2011
n3:svazekPeriodika
53
n3:tvurceVysledku
Slavík, Antonín
n3:wos
000294383100004
n3:zamer
n19:MSM0021620839
s:issn
0017-0895
s:numberOfPages
7
n20:doi
10.1017/S001708951100005X
n8:organizacniJednotka
11320