This HTML5 document contains 40 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
n14http://localhost/temp/predkladatel/
n16http://linked.opendata.cz/resource/domain/vavai/riv/tvurce/
n15http://linked.opendata.cz/resource/domain/vavai/projekt/
n12http://linked.opendata.cz/ontology/domain/vavai/
n18http://linked.opendata.cz/resource/domain/vavai/zamer/
shttp://schema.org/
n4http://linked.opendata.cz/ontology/domain/vavai/riv/
skoshttp://www.w3.org/2004/02/skos/core#
n19http://linked.opendata.cz/resource/domain/vavai/vysledek/RIV%2F00216208%3A11320%2F10%3A10081051%21RIV11-MSM-11320___/
n2http://linked.opendata.cz/resource/domain/vavai/vysledek/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n10http://linked.opendata.cz/ontology/domain/vavai/riv/klicoveSlovo/
n5http://linked.opendata.cz/ontology/domain/vavai/riv/duvernostUdaju/
xsdhhttp://www.w3.org/2001/XMLSchema#
n13http://linked.opendata.cz/ontology/domain/vavai/riv/jazykVysledku/
n9http://linked.opendata.cz/ontology/domain/vavai/riv/aktivita/
n17http://linked.opendata.cz/ontology/domain/vavai/riv/druhVysledku/
n6http://linked.opendata.cz/ontology/domain/vavai/riv/obor/
n11http://reference.data.gov.uk/id/gregorian-year/

Statements

Subject Item
n2:RIV%2F00216208%3A11320%2F10%3A10081051%21RIV11-MSM-11320___
rdf:type
skos:Concept n12:Vysledek
dcterms:description
Each clone C on a fixed base set A induces a quasi-order on the set of all operations on A by the following rule f is a e-minor of g if f can be obtained by substituting operations from e for the variables of g. By making use of a representation of Boolean functions by hypergraphs and hypergraph homomorphisms, it is shown that a clone C on {0, 1} has the property that the corresponding C-minor partial order is universal if and only if C is one of the countably many clones of clique functions or the clone of self-dual monotone functions. Furthermore, the C.-minor partial orders are dense when C is a clone of clique functions. Each clone C on a fixed base set A induces a quasi-order on the set of all operations on A by the following rule f is a e-minor of g if f can be obtained by substituting operations from e for the variables of g. By making use of a representation of Boolean functions by hypergraphs and hypergraph homomorphisms, it is shown that a clone C on {0, 1} has the property that the corresponding C-minor partial order is universal if and only if C is one of the countably many clones of clique functions or the clone of self-dual monotone functions. Furthermore, the C.-minor partial orders are dense when C is a clone of clique functions.
dcterms:title
Minors of Boolean functions with respect to clique functions and hypergraph homomorphisms Minors of Boolean functions with respect to clique functions and hypergraph homomorphisms
skos:prefLabel
Minors of Boolean functions with respect to clique functions and hypergraph homomorphisms Minors of Boolean functions with respect to clique functions and hypergraph homomorphisms
skos:notation
RIV/00216208:11320/10:10081051!RIV11-MSM-11320___
n4:aktivita
n9:Z n9:P
n4:aktivity
P(1M0545), Z(MSM0021620838)
n4:cisloPeriodika
8
n4:dodaniDat
n11:2011
n4:domaciTvurceVysledku
n16:1111116
n4:druhVysledku
n17:J
n4:duvernostUdaju
n5:S
n4:entitaPredkladatele
n19:predkladatel
n4:idSjednocenehoVysledku
271534
n4:idVysledku
RIV/00216208:11320/10:10081051
n4:jazykVysledku
n13:eng
n4:klicovaSlova
hypergraph homomorphisms; Boolean functions
n4:klicoveSlovo
n10:hypergraph%20homomorphisms n10:Boolean%20functions
n4:kodStatuVydavatele
US - Spojené státy americké
n4:kontrolniKodProRIV
[B8B7CD44755F]
n4:nazevZdroje
European Journal of Combinatorics
n4:obor
n6:BA
n4:pocetDomacichTvurcuVysledku
1
n4:pocetTvurcuVysledku
2
n4:projekt
n15:1M0545
n4:rokUplatneniVysledku
n11:2010
n4:svazekPeriodika
31
n4:tvurceVysledku
Lehtonen, Erkko Nešetřil, Jaroslav
n4:wos
000282674700004
n4:zamer
n18:MSM0021620838
s:issn
0195-6698
s:numberOfPages
15
n14:organizacniJednotka
11320