This HTML5 document contains 43 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
n14http://linked.opendata.cz/resource/domain/vavai/vysledek/RIV%2F00216208%3A11320%2F09%3A00206591%21RIV10-MSM-11320___/
dctermshttp://purl.org/dc/terms/
n17http://localhost/temp/predkladatel/
n19http://linked.opendata.cz/resource/domain/vavai/riv/tvurce/
n6http://linked.opendata.cz/resource/domain/vavai/projekt/
n13http://linked.opendata.cz/ontology/domain/vavai/
n18http://linked.opendata.cz/resource/domain/vavai/zamer/
shttp://schema.org/
skoshttp://www.w3.org/2004/02/skos/core#
n3http://linked.opendata.cz/ontology/domain/vavai/riv/
n2http://linked.opendata.cz/resource/domain/vavai/vysledek/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n9http://linked.opendata.cz/ontology/domain/vavai/riv/klicoveSlovo/
n7http://linked.opendata.cz/ontology/domain/vavai/riv/duvernostUdaju/
xsdhhttp://www.w3.org/2001/XMLSchema#
n15http://linked.opendata.cz/ontology/domain/vavai/riv/jazykVysledku/
n8http://linked.opendata.cz/ontology/domain/vavai/riv/aktivita/
n16http://linked.opendata.cz/ontology/domain/vavai/riv/druhVysledku/
n12http://linked.opendata.cz/ontology/domain/vavai/riv/obor/
n4http://reference.data.gov.uk/id/gregorian-year/

Statements

Subject Item
n2:RIV%2F00216208%3A11320%2F09%3A00206591%21RIV10-MSM-11320___
rdf:type
skos:Concept n13:Vysledek
dcterms:description
This paper initiates a general study of the connection between graph homomorphisms and Tutte polynomia. This connection enables us to extend the study to other important polynomial invariants associated with graphs, and closely related to the Tutte polynomial. We then obtain applications of these relationships in several areas, including Abelian Groups and Statistical Physics. A new type of uniqueness of graphs, strongly related to chromatically-unique graphs and Tutte-unique graphs, is introduced in order to provide a new point of view of the conjectures about uniqueness of graphs stated by Bollobas, Peabody and Riordan. This paper initiates a general study of the connection between graph homomorphisms and Tutte polynomia. This connection enables us to extend the study to other important polynomial invariants associated with graphs, and closely related to the Tutte polynomial. We then obtain applications of these relationships in several areas, including Abelian Groups and Statistical Physics. A new type of uniqueness of graphs, strongly related to chromatically-unique graphs and Tutte-unique graphs, is introduced in order to provide a new point of view of the conjectures about uniqueness of graphs stated by Bollobas, Peabody and Riordan.
dcterms:title
Homomorphisms and polynomial invariants of graphs Homomorphisms and polynomial invariants of graphs
skos:prefLabel
Homomorphisms and polynomial invariants of graphs Homomorphisms and polynomial invariants of graphs
skos:notation
RIV/00216208:11320/09:00206591!RIV10-MSM-11320___
n3:aktivita
n8:Z n8:P
n3:aktivity
P(1M0545), Z(MSM0021620838)
n3:cisloPeriodika
7
n3:dodaniDat
n4:2010
n3:domaciTvurceVysledku
n19:1111116
n3:druhVysledku
n16:J
n3:duvernostUdaju
n7:S
n3:entitaPredkladatele
n14:predkladatel
n3:idSjednocenehoVysledku
317737
n3:idVysledku
RIV/00216208:11320/09:00206591
n3:jazykVysledku
n15:eng
n3:klicovaSlova
Homomorphisms; polynomial; invariants; graphs
n3:klicoveSlovo
n9:polynomial n9:graphs n9:invariants n9:Homomorphisms
n3:kodStatuVydavatele
GB - Spojené království Velké Británie a Severního Irska
n3:kontrolniKodProRIV
[D92A822E076A]
n3:nazevZdroje
European Journal of Combinatorics
n3:obor
n12:BA
n3:pocetDomacichTvurcuVysledku
1
n3:pocetTvurcuVysledku
3
n3:projekt
n6:1M0545
n3:rokUplatneniVysledku
n4:2009
n3:svazekPeriodika
30
n3:tvurceVysledku
Revuelta, Pastora Nešetřil, Jaroslav Garijo, Delia
n3:wos
000269117900011
n3:zamer
n18:MSM0021620838
s:issn
0195-6698
s:numberOfPages
17
n17:organizacniJednotka
11320