This HTML5 document contains 46 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
n17http://localhost/temp/predkladatel/
n12http://linked.opendata.cz/resource/domain/vavai/riv/tvurce/
n6http://linked.opendata.cz/ontology/domain/vavai/
n5http://linked.opendata.cz/resource/domain/vavai/zamer/
n15http://linked.opendata.cz/resource/domain/vavai/vysledek/RIV%2F00216208%3A11320%2F08%3A00100603%21RIV09-MSM-11320___/
shttp://schema.org/
n4http://linked.opendata.cz/ontology/domain/vavai/riv/
skoshttp://www.w3.org/2004/02/skos/core#
n2http://linked.opendata.cz/resource/domain/vavai/vysledek/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n8http://linked.opendata.cz/ontology/domain/vavai/riv/klicoveSlovo/
n11http://linked.opendata.cz/ontology/domain/vavai/riv/duvernostUdaju/
xsdhhttp://www.w3.org/2001/XMLSchema#
n16http://linked.opendata.cz/ontology/domain/vavai/riv/jazykVysledku/
n10http://linked.opendata.cz/ontology/domain/vavai/riv/aktivita/
n18http://linked.opendata.cz/ontology/domain/vavai/riv/druhVysledku/
n14http://linked.opendata.cz/ontology/domain/vavai/riv/obor/
n9http://reference.data.gov.uk/id/gregorian-year/

Statements

Subject Item
n2:RIV%2F00216208%3A11320%2F08%3A00100603%21RIV09-MSM-11320___
rdf:type
n6:Vysledek skos:Concept
dcterms:description
This paper studies shapes (curves and surfaces) which can be described by (piecewise) polynomial support functions. The class of these shapes is closed under convolutions, offsetting, rotations and translations. We give a geometric discussion of these shapes and present methods for the approximation of general curves and surfaces by them. Based on the rich theory of spherical spline functions, this leads to computational techniques for rational curves and surfaces with rational offsets, which can deal with shapes without inflections/parabolic points. Tento článek suduje tvary (křivky a plochy), které mohou být popsány polynomiální opěrnou funkcí. This paper studies shapes (curves and surfaces) which can be described by (piecewise) polynomial support functions. The class of these shapes is closed under convolutions, offsetting, rotations and translations. We give a geometric discussion of these shapes and present methods for the approximation of general curves and surfaces by them. Based on the rich theory of spherical spline functions, this leads to computational techniques for rational curves and surfaces with rational offsets, which can deal with shapes without inflections/parabolic points.
dcterms:title
Curves and surfaces represented by polynomial support fuctions Křivky a plochy reprezentované polynomiální opěrnou funkcí Curves and surfaces represented by polynomial support fuctions
skos:prefLabel
Curves and surfaces represented by polynomial support fuctions Curves and surfaces represented by polynomial support fuctions Křivky a plochy reprezentované polynomiální opěrnou funkcí
skos:notation
RIV/00216208:11320/08:00100603!RIV09-MSM-11320___
n4:aktivita
n10:Z
n4:aktivity
Z(MSM0021620839)
n4:cisloPeriodika
1-3
n4:dodaniDat
n9:2009
n4:domaciTvurceVysledku
n12:4296133
n4:druhVysledku
n18:J
n4:duvernostUdaju
n11:S
n4:entitaPredkladatele
n15:predkladatel
n4:idSjednocenehoVysledku
361806
n4:idVysledku
RIV/00216208:11320/08:00100603
n4:jazykVysledku
n16:eng
n4:klicovaSlova
Curves; surfaces; represented; polynomial; support; fuctions
n4:klicoveSlovo
n8:support n8:Curves n8:represented n8:polynomial n8:fuctions n8:surfaces
n4:kodStatuVydavatele
FR - Francouzská republika
n4:kontrolniKodProRIV
[53F6165D1BD4]
n4:nazevZdroje
Theoretical Computer Science
n4:obor
n14:BA
n4:pocetDomacichTvurcuVysledku
1
n4:pocetTvurcuVysledku
3
n4:rokUplatneniVysledku
n9:2008
n4:svazekPeriodika
392
n4:tvurceVysledku
Šír, Zbyněk Juettler, Bert Gravesen, Jens
n4:wos
000253871900011
n4:zamer
n5:MSM0021620839
s:issn
0304-3975
s:numberOfPages
17
n17:organizacniJednotka
11320