Attributes | Values |
---|
rdf:type
| |
http://linked.open...gbank/description
| - A non-essential amino acid present abundantly throughout the body and is involved in many metabolic processes. It is synthesized from glutamic acid and ammonia. It is the principal carrier of nitrogen in the body and is an important energy source for many cells. [PubChem] (en)
|
http://linked.open...y/drugbank/dosage
| |
http://linked.open...generalReferences
| - # Boza JJ, Dangin M, Moennoz D, Montigon F, Vuichoud J, Jarret A, Pouteau E, Gremaud G, Oguey-Araymon S, Courtois D, Woupeyi A, Finot PA, Ballevre O: Free and protein-bound glutamine have identical splanchnic extraction in healthy human volunteers. Am J Physiol Gastrointest Liver Physiol. 2001 Jul;281(1):G267-74. "Pubmed":http://www.ncbi.nlm.nih.gov/pubmed/11408280 # McAnena OJ, Moore FA, Moore EE, Jones TN, Parsons P: Selective uptake of glutamine in the gastrointestinal tract: confirmation in a human study. Br J Surg. 1991 Apr;78(4):480-2. "Pubmed":http://www.ncbi.nlm.nih.gov/pubmed/1903318 # Morlion BJ, Stehle P, Wachtler P, Siedhoff HP, Koller M, Konig W, Furst P, Puchstein C: Total parenteral nutrition with glutamine dipeptide after major abdominal surgery: a randomized, double-blind, controlled study. Ann Surg. 1998 Feb;227(2):302-8. "Pubmed":http://www.ncbi.nlm.nih.gov/pubmed/9488531 # Jian ZM, Cao JD, Zhu XG, Zhao WX, Yu JC, Ma EL, Wang XR, Zhu MW, Shu H, Liu YW: The impact of alanyl-glutamine on clinical safety, nitrogen balance, intestinal permeability, and clinical outcome in postoperative patients: a randomized, double-blind, controlled study of 120 patients. JPEN J Parenter Enteral Nutr. 1999 Sep-Oct;23(5 Suppl):S62-6. "Pubmed":http://www.ncbi.nlm.nih.gov/pubmed/10483898 (en)
|
http://linked.open...gy/drugbank/group
| - approved (en)
- nutraceutical (en)
- investigational (en)
|
http://linked.open...ugbank/indication
| - Used for nutritional supplementation, also for treating dietary shortage or imbalance. (en)
|
http://linked.open...bank/manufacturer
| |
sameAs
| |
Title
| |
adms:identifier
| |
http://linked.open...mechanismOfAction
| - Supplemental L-glutamine's possible immunomodulatory role may be accounted for in a number of ways. L-glutamine appears to play a major role in protecting the integrity of the gastrointestinal tract and, in particular, the large intestine. During catabolic states, the integrity of the intestinal mucosa may be compromised with consequent increased intestinal permeability and translocation of Gram-negative bacteria from the large intestine into the body. The demand for L-glutamine by the intestine, as well as by cells such as lymphocytes, appears to be much greater than that supplied by skeletal muscle, the major storage tissue for L-glutamine. L-glutamine is the preferred respiratory fuel for enterocytes, colonocytes and lymphocytes. Therefore, supplying supplemental L-glutamine under these conditions may do a number of things. For one, it may reverse the catabolic state by sparing skeletal muscle L-glutamine. It also may inhibit translocation of Gram-negative bacteria from the large intestine. L-glutamine helps maintain secretory IgA, which functions primarily by preventing the attachment of bacteria to mucosal cells. L-glutamine appears to be required to support the proliferation of mitogen-stimulated lymphocytes, as well as the production of interleukin-2 (IL-2) and interferon-gamma (IFN-gamma). It is also required for the maintenance of lymphokine-activated killer cells (LAK). L-glutamine can enhance phagocytosis by neutrophils and monocytes. It can lead to an increased synthesis of glutathione in the intestine, which may also play a role in maintaining the integrity of the intestinal mucosa by ameliorating oxidative stress. The exact mechanism of the possible immunomodulatory action of supplemental L-glutamine, however, remains unclear. It is conceivable that the major effect of L-glutamine occurs at the level of the intestine. Perhaps enteral L-glutamine acts directly on intestine-associated lymphoid tissue and stimulates overall immune function by that mechanism, without passing beyond the splanchnic bed. (en)
|
http://linked.open...drugbank/packager
| |
http://linked.open...y/drugbank/patent
| |
http://linked.open.../drugbank/synonym
| - Levoglutamide (en)
- GLUTAMINE (en)
- L-Glutamine (en)
- (S)-2,5-diamino-5-oxopentanoic acid (en)
- L-(+)-glutamine (en)
- L-2-aminoglutaramic acid (en)
- L-glutamic acid γ-amide (en)
- Q (en)
- (2S)-2,5-Diamino-5-oxopentanoic acid (en)
- (2S)-2-amino-4-carbamoylbutanoic acid (en)
- Glutamic acid 5-amide (en)
- Glutamic acid amide (en)
- L-Glutamic acid gamma-amide (en)
- L-Glutamin (en)
- L-Glutaminsaeure-5-amid (en)
- L-Glutaminsäure-5-amid (en)
|
http://linked.open...drugbank/toxicity
| - Doses of L-glutamine up to 21 grams daily appear to be well tolerated. Reported adverse reactions are mainly gastrointestinal and not common. They include constipation and bloating. There is one older report of two hypomanic patients whose manic symptoms were exacerbated following the use of 2 to 4 grams daily of L-glutamine. The symptoms resolved when the L-glutamine was stopped. These patients were not rechallenged, nor are there any other reports of this nature. (en)
|
http://linked.open...ynthesisReference
| - Stephen Paul, "Novel preparation of fiber, L-glutamine and a soy derivative for the purpose of enhancement of isoflavone bioavailability." U.S. Patent US20020076455, issued June 20, 2002. (en)
|
http://linked.open...y/mesh/hasConcept
| |
foaf:page
| |
http://linked.open...ugbank/IUPAC-Name
| |
http://linked.open...gy/drugbank/InChI
| |
http://linked.open...Molecular-Formula
| |
http://linked.open.../Molecular-Weight
| |
http://linked.open...noisotopic-Weight
| |
http://linked.open...y/drugbank/SMILES
| |
http://linked.open.../Water-Solubility
| |
http://linked.open...ogy/drugbank/logP
| |
http://linked.open...ogy/drugbank/logS
| |
http://linked.open...logy/drugbank/pKa
| |
http://linked.open...l/drug/hasATCCode
| |
http://linked.open...nd-Acceptor-Count
| |
http://linked.open...-Bond-Donor-Count
| |
http://linked.open...drugbank/InChIKey
| |
http://linked.open...urface-Area--PSA-
| |
http://linked.open...nk/Polarizability
| |
http://linked.open...bank/Refractivity
| |
http://linked.open...atable-Bond-Count
| |
http://linked.open...ugbank/absorption
| - Absorption is efficient and occurs by an active transport mechanism (en)
|
http://linked.open.../affectedOrganism
| - Humans and other mammals (en)
|
http://linked.open...casRegistryNumber
| |
http://linked.open...drugbank/category
| |
http://linked.open...gbank/containedIn
| |
http://linked.open...k/Bioavailability
| |
http://linked.open...bank/Ghose-Filter
| |
http://linked.open...nk/MDDR-Like-Rule
| |
http://linked.open...ank/Melting-Point
| |
http://linked.open...k/Number-of-Rings
| |
http://linked.open...siological-Charge
| |
http://linked.open...bank/Rule-of-Five
| |
http://linked.open...tional-IUPAC-Name
| |
http://linked.open...strongest-acidic-
| |
http://linked.open...-strongest-basic-
| |